LAG3's Enigmatic Mechanism of Action

被引:127
作者
Graydon, Colin G. [1 ]
Mohideen, Shifa [1 ]
Fowke, Keith R. [1 ,2 ,3 ,4 ]
机构
[1] Univ Manitoba, Dept Med Microbiol & Infect Dis, Winnipeg, MB, Canada
[2] Univ Nairobi, Dept Med Micobiol, Nairobi, Kenya
[3] Univ Manitoba, Max Rady Coll Med, Dept Community Hlth Sci, Winnipeg, MB, Canada
[4] Partners Hlth & Dev Africa, Nairobi, Kenya
来源
FRONTIERS IN IMMUNOLOGY | 2021年 / 11卷
基金
加拿大健康研究院;
关键词
LAG3; immune checkpoint; immune exhaustion; checkpoint inhibition; mechanism of action; Lymphocyte activation gene-3; immune checkpoint inhibitors; LYMPHOCYTE-ACTIVATION GENE-3; NEGATIVE REGULATORY FUNCTION; T-CELL; TRANSCRIPTION FACTOR; LAG-3; CD223; EXPRESSION; PROTEIN; LIGAND; MOLECULES; PROLIFERATION;
D O I
10.3389/fimmu.2020.615317
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
LAG3 is an important immune checkpoint with relevance in cancer, infectious disease and autoimmunity. However, despite LAG3's role in immune exhaustion and the great potential of LAG3 inhibition as treatment, much remains unknown about its biology, particularly its mechanism of action. This review describes the knowns, unknowns and controversies surrounding LAG3. This includes examination of how LAG3 is regulated transcriptionally and post-translationally by endocytosis and proteolytic cleavage. We also discuss the interactions of LAG3 with its ligands and the purpose thereof. Finally, we review LAG3's mechanism of action, including the roles of LAG3 intracellular motifs and the lack of a role for CD4 competition. Overall, understanding the biology of LAG3 can provide greater insight on LAG3 function, which may broaden the appreciation for LAG3's role in disease and potentially aid in the development of targeted therapies.
引用
收藏
页数:7
相关论文
共 57 条
  • [21] LAG-3 does not define a specific mode of natural killing in human
    Huard, B
    Tournier, M
    Triebel, F
    [J]. IMMUNOLOGY LETTERS, 1998, 61 (2-3) : 109 - 112
  • [22] HUARD B, 1994, IMMUNOGENETICS, V39, P213
  • [23] Egr-2 transcription factor is required for Blimp-1-mediated IL-10 production in IL-27-stimulated CD4+ T cells
    Iwasaki, Yukiko
    Fujio, Keishi
    Okamura, Tomohisa
    Yanai, Atsushi
    Sumitomo, Shuji
    Shoda, Hirofumi
    Tamura, Tomohiko
    Yoshida, Hiroki
    Charnay, Patrick
    Yamamoto, Kazuhiko
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2013, 43 (04) : 1063 - 1073
  • [24] Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection
    Kao, Charlly
    Oestreich, Kenneth J.
    Paley, Michael A.
    Crawford, Alison
    Angelosanto, Jill M.
    Ali, Mohammed-Alkhatim A.
    Intlekofer, Andrew M.
    Boss, Jeremy M.
    Reiner, Steven L.
    Weinmann, Amy S.
    Wherry, E. John
    [J]. NATURE IMMUNOLOGY, 2011, 12 (07) : 663 - U117
  • [25] TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion
    Khan, Omar
    Giles, Josephine R.
    McDonald, Sierra
    Manne, Sasikanth
    Ngiow, Shin Foong
    Patel, Kunal P.
    Werner, Michael T.
    Huang, Alexander C.
    Alexander, Katherine A.
    Wu, Jennifer E.
    Attanasio, John
    Yan, Patrick
    George, Sangeeth M.
    Bengsch, Bertram
    Staupe, Ryan P.
    Donahue, Greg
    Xu, Wei
    Amaravadi, Ravi K.
    Xu, Xiaowei
    Karakousis, Giorgos C.
    Mitchell, Tara C.
    Schuchter, Lynn M.
    Kaye, Jonathan
    Berger, Shelley L.
    Wherry, E. John
    [J]. NATURE, 2019, 571 (7764) : 211 - +
  • [26] LAG3 (LAG-3, CD223) DNA methylation correlates with LAG3 expression by tumor and immune cells, immune cell infiltration, and overall survival in clear cell renal cell carcinoma
    Kluemper, Niklas
    Ralser, Damian J.
    Bawden, Emma Grace
    Landsberg, Jenny
    Zarbl, Romina
    Kristiansen, Glen
    Toma, Marieta
    Ritter, Manuel
    Hoelzel, Michael
    Ellinger, Joerg
    Dietrich, Dimo
    [J]. JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (01)
  • [27] Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells
    Kouo, Theodore
    Huang, Lanqing
    Pucsek, Alexandra B.
    Cao, Minwei
    Solt, Sara
    Armstrong, Todd
    Jaffee, Elizabeth
    [J]. CANCER IMMUNOLOGY RESEARCH, 2015, 3 (04) : 412 - U128
  • [28] Centrosomal P4.1-associated protein is a new member of transcriptional coactivators for nuclear factor-κB
    Koyanagi, M
    Hijikata, M
    Watashi, K
    Masui, O
    Shimotohno, K
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (13) : 12430 - 12437
  • [29] Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma
    Larkin, J.
    Chiarion-Sileni, V.
    Gonzalez, R.
    Grob, J-J
    Rutkowski, P.
    Lao, C. D.
    Cowey, C. L.
    Schadendorf, D.
    Wagstaff, J.
    Dummer, R.
    Ferrucci, P. F.
    Smylie, M.
    Hogg, D.
    Hill, A.
    Marquez-Rodas, I.
    Haanen, J.
    Guidoboni, M.
    Maio, M.
    Schoffski, P.
    Carlino, M. S.
    Lebbe, C.
    McArthur, G.
    Ascierto, P. A.
    Daniels, G. A.
    Long, G. V.
    Bastholt, L.
    Rizzo, J. I.
    Balogh, A.
    Moshyk, A.
    Hodi, F. S.
    Wolchok, J. D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (16) : 1535 - 1546
  • [30] Metalloproteases regulate T-cell proliferation and effector function via LAG-3
    Li, Nianyu
    Wang, Yao
    Forbes, Karen
    Vignali, Kate M.
    Heale, Bret S.
    Saftig, Paul
    Hartmann, Dieter
    Black, Roy A.
    Rossi, John J.
    Blobel, Carl P.
    Dempsey, Peter J.
    Workman, Creg J.
    Vignali, Dario A. A.
    [J]. EMBO JOURNAL, 2007, 26 (02) : 494 - 504