On the universality of asymptotic limits in the theory of field line diffusion and perpendicular transport of energetic particles

被引:10
|
作者
Shalchi, A. [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Magnetic fields; Turbulence; Energetic particles; COSMIC-RAY TRANSPORT; LEVY RANDOM-WALK; MAGNETIC-FIELD; CHARGED-PARTICLES; TURBULENCE; SIMULATIONS; RECOVERY; REGIMES;
D O I
10.1016/j.asr.2014.01.006
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We discuss the random walk of magnetic field lines in astrophysical plasmas. Based on the standard theory of field line diffusion we show that there are two asymptotic limits. In these limits field line wandering is universal because in both regimes the field line diffusion coefficient depends only on fundamental length scales and absolute magnetic field strengths. As examples we discuss the field line diffusion coefficient for different prominent turbulence models namely the slab model, the two-dimensional model, and the Goldreich-Sridhar model. We show that the field line diffusion coefficient for the latter model agrees with the results obtained for slab and two-dimensional turbulence in limiting cases. We also discuss the transport of energetic particles perpendicular with respect to the mean magnetic field. Based on the unified nonlinear transport theory we consider again asymptotic limits. It is shown that one can identify four different regimes in which the transport is again universal. In all four cases perpendicular transport only depends on fundamental length scales of turbulence, magnetic field values, and the parallel diffusion coefficient. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1024 / 1034
页数:11
相关论文
共 42 条
  • [21] Perpendicular transport of charged particles: Results for the unified nonlinear transport theory derived from the Newton-Lorentz equation
    Dosch, A.
    Shalchi, A.
    Zank, G. P.
    ADVANCES IN SPACE RESEARCH, 2013, 52 (05) : 936 - 950
  • [22] Transport of energetic particles in turbulent space plasmas: pitch-angle scattering, telegraph, and diffusion equations
    Shalchi, Andreas
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2024, 11
  • [23] DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES
    Marsh, M. S.
    Dalla, S.
    Kelly, J.
    Laitinen, T.
    ASTROPHYSICAL JOURNAL, 2013, 774 (01)
  • [24] Energetic Particle Perpendicular Diffusion: Simulations and Theory in Noisy Reduced Magnetohydrodynamic Turbulence
    Snodin, A. P.
    Jitsuk, T.
    Ruffolo, D.
    Matthaeus, W. H.
    ASTROPHYSICAL JOURNAL, 2022, 932 (02)
  • [26] Perpendicular transport of charged particles in composite model turbulence: Recovery of diffusion
    Qin, G
    Matthaeus, WH
    Bieber, JW
    ASTROPHYSICAL JOURNAL, 2002, 578 (02) : L117 - L120
  • [27] NON-AXISYMMETRIC PERPENDICULAR DIFFUSION OF CHARGED PARTICLES AND THEIR TRANSPORT ACROSS TANGENTIAL MAGNETIC DISCONTINUITIES
    Strauss, R. D.
    le Roux, J. A.
    Engelbrecht, N. E.
    Ruffolo, D.
    Dunzlaff, P.
    ASTROPHYSICAL JOURNAL, 2016, 825 (01)
  • [28] AN EFFECT OF PERPENDICULAR DIFFUSION ON THE ANISOTROPY OF SOLAR ENERGETIC PARTICLES FROM UNCONNECTED SOURCES
    Qin, G.
    He, H. -Q.
    Zhang, M.
    ASTROPHYSICAL JOURNAL, 2011, 738 (01)
  • [29] PERPENDICULAR DIFFUSION IN THE TRANSPORT OF SOLAR ENERGETIC PARTICLES FROM UNCONNECTED SOURCES: THE COUNTER-STREAMING PARTICLE BEAMS REVISITED
    He, H. -Q.
    ASTROPHYSICAL JOURNAL, 2015, 814 (02)
  • [30] Magnetic field line random walk and solar energetic particle path lengths Stochastic theory and PSP/IS⊙IS observations
    Chhiber, R.
    Matthaeus, W. H.
    Cohen, C. M. S.
    Ruffolo, D.
    Sonsrettee, W.
    Tooprakai, P.
    Seripienlert, A.
    Chuychai, P.
    Usmanov, A., V
    Goldstein, M. L.
    McComas, D. J.
    Leske, R. A.
    Szalay, J. R.
    Joyce, C. J.
    Cummings, A. C.
    Roelof, E. C.
    Christian, E. R.
    Mewaldt, R. A.
    Labrador, A. W.
    Giacalone, J.
    Schwadron, N. A.
    Mitchell, D. G.
    Hill, M. E.
    Wiedenbeck, M. E.
    McNutt, R. L., Jr.
    Desai, M., I
    ASTRONOMY & ASTROPHYSICS, 2021, 650