Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning

被引:171
作者
Song, Zhigang [1 ]
Zou, Shuangmei [2 ]
Zhou, Weixun [3 ]
Huang, Yong [1 ]
Shao, Liwei [1 ]
Yuan, Jing [1 ]
Gou, Xiangnan [1 ]
Jin, Wei [1 ]
Wang, Zhanbo [1 ]
Chen, Xin [1 ]
Ding, Xiaohui [1 ]
Liu, Jinhong [1 ]
Yu, Chunkai [4 ]
Ku, Calvin [5 ]
Liu, Cancheng [5 ]
Sun, Zhuo [5 ]
Xu, Gang [5 ]
Wang, Yuefeng [5 ]
Zhang, Xiaoqing [5 ]
Wang, Dandan [6 ]
Wang, Shuhao [5 ,7 ]
Xu, Wei [7 ]
Davis, Richard C. [8 ]
Shi, Huaiyin [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Pathol, Beijing 100853, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Dept Pathol, Natl Canc Ctr, Natl Clin Res Ctr Canc,Canc Hosp, Beijing 100021, Peoples R China
[3] Peking Union Med Coll Hosp, Dept Pathol, Beijing 100005, Peoples R China
[4] Capital Med Univ, Beijing Shijitan Hosp, Dept Pathol, Beijing 100038, Peoples R China
[5] Thorough Images, Beijing 100102, Peoples R China
[6] Peking Univ, Sch Basic Med Sci, Hosp 3, Dept Pathol,Hlth Sci Ctr, Beijing 100083, Peoples R China
[7] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[8] Duke Univ, Med Ctr, Dept Pathol, Durham, NC 27710 USA
基金
中国国家自然科学基金;
关键词
CLASSIFICATION; VALIDATION; ALGORITHM;
D O I
10.1038/s41467-020-18147-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The early detection and accurate histopathological diagnosis of gastric cancer increase the chances of successful treatment. The worldwide shortage of pathologists offers a unique opportunity for the use of artificial intelligence assistance systems to alleviate the workload and increase diagnostic accuracy. Here, we report a clinically applicable system developed at the Chinese PLA General Hospital, China, using a deep convolutional neural network trained with 2,123 pixel-level annotated H&E-stained whole slide images. The model achieves a sensitivity near 100% and an average specificity of 80.6% on a real-world test dataset with 3,212 whole slide images digitalized by three scanners. We show that the system could aid pathologists in improving diagnostic accuracy and preventing misdiagnoses. Moreover, we demonstrate that our system performs robustly with 1,582 whole slide images from two other medical centres. Our study suggests the feasibility and benefits of using histopathological artificial intelligence assistance systems in routine practice scenarios. The early detection and accurate histopathological diagnosis of gastric cancer are essential factors that can help increase the chances of successful treatment. Here, the authors report on a digital pathology tool achieving high performance on a real world test dataset and show that the system can aid pathologists in improving diagnostic accuracy.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Complete Digital Pathology for Routine Histopathology Diagnosis in a Multicenter Hospital Network
    Antonio Retamero, Juan
    Aneiros-Fernandez, Jose
    del Moral, Raimundo G.
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2020, 144 (02) : 221 - 228
  • [3] Automated Gleason grading of prostate cancer tissue microarrays via deep learning
    Arvaniti, Eirini
    Fricker, Kim S.
    Moret, Michael
    Rupp, Niels
    Hermanns, Thomas
    Fankhauser, Christian
    Wey, Norbert
    Wild, Peter J.
    Ruschoff, Jan H.
    Claassen, Manfred
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [4] From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge
    Bandi, Peter
    Geessink, Oscar
    Manson, Quirine
    van Dijk, Marcory
    Balkenhol, Maschenka
    Hermsen, Meyke
    Bejnordi, Babak Ehteshami
    Lee, Byungjae
    Paeng, Kyunghyun
    Zhong, Aoxiao
    Li, Quanzheng
    Zanjani, Farhad Ghazvinian
    Zinger, Svitlana
    Fukuta, Keisuke
    Komura, Daisuke
    Ovtcharov, Vlado
    Cheng, Shenghua
    Zeng, Shaoqun
    Thagaard, Jeppe
    Dahl, Anders B.
    Lin, Huangjing
    Chen, Hao
    Jacobsson, Ludwig
    Hedlund, Martin
    Cetin, Melih
    Halici, Eren
    Jackson, Hunter
    Chen, Richard
    Both, Fabian
    Franke, Joerg
    Kusters-Vandevelde, Heidi
    Vreuls, Willem
    Bult, Peter
    van Ginneken, Bram
    van der Laak, Jeroen
    Litjens, Geert
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 550 - 560
  • [5] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [6] Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology
    Bera, Kaustav
    Schalper, Kurt A.
    Rimm, David L.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) : 703 - 715
  • [7] Bosman FT., 2010, WHO CLASSIFICATION T
  • [8] Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard
    Bulten, Wouter
    Bandi, Peter
    Hoven, Jeffrey
    van de Loo, Rob
    Lotz, Johannes
    Weiss, Nick
    van der Laak, Jeroen
    van Ginneken, Bram
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [10] Chen Junyong, 2015, Zhonghua Wei Chang Wai Ke Za Zhi, V18, P1256