Infinitely many solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian

被引:31
作者
Dai, Guowei [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Laplacian; Differential inclusion problem; Variational principle; VARIATIONAL PRINCIPLE; EXISTENCE; SPACES;
D O I
10.1016/j.na.2008.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a differential inclusion problem involving the p(x)-Laplacian of the type {-div(vertical bar del u vertical bar(p(x)-2)del u) + lambda(x)vertical bar u vertical bar(p(x)-2)u is an element of partial derivative F(x,u) + partial derivative G(x,u) in Omega, partial derivative u/partial derivative gamma = 0 on partial derivative Omega. We prove the existence of infinitely many solutions of this problem under suitable hypotheses by applying a non-smooth Ricceritype variational principle and the theory of the variable exponent Sobolev spaces. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2297 / 2305
页数:9
相关论文
共 20 条
[1]   Existence of solutions of the Neumann problem for a class of equations involving the p-Laplacian via a variational principle of Ricceri [J].
Anello, G ;
Cordaro, G .
ARCHIV DER MATHEMATIK, 2002, 79 (04) :274-287
[2]  
[Anonymous], 2003, FUTURE TRENDS GEOMET
[3]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[4]  
Diening L., 2004, FSDONA04 Proc, V66, P38
[5]   Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian [J].
Fan, Xianling ;
Ji, Chao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) :248-260
[6]   On the sub-supersolution method for p(x)-Laplacian equations [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) :665-682
[7]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[8]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[9]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[10]   Existence and multiplicity of solutions for p(x)-Laplacian equations in RN [J].
Fan, XL ;
Han, XY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :173-188