共 37 条
Highly efficient cycloreversion of photochromic dithienylethene compounds using visible light-driven photoredox catalysis
被引:40
|作者:
Lee, Sumin
[1
]
You, Youngmin
[2
]
Ohkubo, Kei
[3
]
Fukuzumi, Shunichi
[1
,3
]
Nam, Wonwoo
[1
]
机构:
[1] Ewha Womans Univ, Dept Bioinspired Sci, Seoul 120750, South Korea
[2] Kyung Hee Univ, Dept Adv Mat Engn Informat & Elect, Yongin 446701, Gyeonggi Do, South Korea
[3] Osaka Univ, ALCA, Japan Sci & Technol Agcy JST, Dept Mat & Life Sci,Grad Sch Engn, Suita, Osaka 5650871, Japan
关键词:
MARCUS INVERTED REGION;
PHOTOINDUCED ELECTRON-TRANSFER;
RADICAL-ION-PAIRS;
ENERGY-GAP DEPENDENCE;
CHARGE-RECOMBINATION;
DIARYLETHENES;
DERIVATIVES;
COMPLEXES;
DITHIENYLCYCLOPENTENES;
ACETONITRILE;
D O I:
10.1039/c3sc52900b
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Photochromic cis-1,2-dithienylethene (DTE) compounds are the most suitable to the application in reversible molecular memories and switches, but imbalance in the quantum yields for the chromic interconversion limits the full potentials. We have demonstrated and investigated photoelectrocatalytic cycloreversion of DTE compounds. A series of cyclometalated Ir(III) complexes served as photoredox catalysts to achieve one order of magnitude enhancement in the cycloreversion quantum yields. The mechanism, involving photoinduced oxidation of DTE, electrocatalytic ring opening and reductive termination, has been thoroughly investigated. Nanosecond transient spectroscopic techniques were employed to directly monitor bidirectional electron transfer between DTE and the photoredox catalyst. It was found that the oxidative photoinduced electron transfer was diffusion-controlled and located in the Marcus-normal region, whereas the competing back electron transfer occurred in the Marcus-inverted region. This novel discovery establishes that synthetic control over back electron transfer, rather than photoinduced electron transfer, can improve the performance of the photoelectrocatalysis. Combined studies, including the kinetic investigations with the use of variable-temperature stopped-flow UV-vis absorption spectroscopy and quantum chemical calculations based on time-dependent density functional theory, further enabled identification of the radical intermediate that underwent thermal, electrocatalytic cycloreversion. Finally, analyses based on the Marcus theory of electron transfer suggested regeneration of the excited-state catalyst in the termination step to initiate dark-state electrocatalytic cycloreversion. The results obtained in this work established novel principles to maximizing quantum yields for photoinduced cycloreversion of DTEs. It is envisioned that our findings will provide novel guidance to the future application of the truly reversible photochromism to a broad range of molecular photonic systems.
引用
收藏
页码:1463 / 1474
页数:12
相关论文