Primitivity of permutation groups, coherent algebras and matrices

被引:3
作者
Jones, GA [1 ]
Klin, M
Moshe, Y
机构
[1] Univ Southampton, Fac Math Studies, Southampton SO17 1BJ, Hants, England
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1006/jcta.2001.3245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A coherent algebra is F-primitive if each of its non-identity basis matrices is primitive in the sense of Frobenius. We investigate the relationship between the primitivity of a permutation group. the primitivity of its centralizer algebra, and F-primitivity. The results obtained are applied to give new proofs of primitivity criteria for the exponentiations of permutation groups and of coherent algebras. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:210 / 217
页数:8
相关论文
共 20 条
  • [1] [Anonymous], THESIS NIKOLAEV
  • [2] Brualdi R. A., 1991, COMBINATORIAL MATRIX, V39
  • [3] FINITE PERMUTATION-GROUPS AND FINITE SIMPLE-GROUPS
    CAMERON, PJ
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JAN) : 1 - 22
  • [4] Dixon JD., 1996, PERMUTATION GROUPS
  • [5] EVDOKIMOV SA, 1999, ZAP NAUCHN SEM S PET, V256, P38
  • [6] EVDOKIMOV SA, 1999, ZAP NAUCHN SEM S PET, V256, P264
  • [7] FARADZEV IA, 1994, SOVIET SERIES, V84, P1
  • [8] Frobenius G., 1912, MATRIZEN NICHT NEGAT, P456
  • [9] HARARY F, 1969, AM MATH MONTHLY, V66, P572
  • [10] Harary F., 1973, GRAPHICAL ENUMERATIO