Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar

被引:28
作者
Gitifar, Vahid [1 ]
Eslamloueyan, Reza [1 ]
Sarshar, Mohammad [2 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Shiraz, Iran
[2] Mech Engn Res Ctr, Shiraz, Iran
关键词
Sugarcane bagasse; Pretreatment; Sulfuric acid; Ozonolysis; Optimal artificial neural networks; CANE BAGASSE; ACID-HYDROLYSIS; ENZYMATIC DIGESTIBILITY; OZONOLYSIS PRETREATMENT; BIOETHANOL PRODUCTION; ETHANOL; LIQUIDS; STRAW; WHEAT;
D O I
10.1016/j.biortech.2013.08.060
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this study, pretreatment of sugarcane bagasse and subsequent enzymatic hydrolysis is investigated using two categories of pretreatment methods: dilute acid (DA) pretreatment and combined DA ozonolysis (DAO) method. Both methods are accomplished at different solid ratios, sulfuric acid concentrations, autoclave residence times, bagasse moisture content, and ozonolysis time. The results show that the DAO pretreatment can significantly increase the production of glucose compared to DA method. Applying k-fold cross validation method, two optimal artificial neural networks (ANNs) are trained for estimations of glucose concentrations for DA and DAO pretreatment methods. Comparing the modeling results with experimental data indicates that the proposed ANNs have good estimation abilities. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 25 条
[1]   Kinetic study of the acid hydrolysis of sugar cane bagasse [J].
Aguilar, R ;
Ramírez, JA ;
Garrote, G ;
Vázquez, M .
JOURNAL OF FOOD ENGINEERING, 2002, 55 (04) :309-318
[2]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[3]   Cross-validation as the objective function for variable-selection techniques [J].
Baumann, K .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2003, 22 (06) :395-406
[4]   Developing a feed forward neural network multilayer model for prediction of binary diffusion coefficient in liquids [J].
Beigzadeh, Reza ;
Rahimi, Masoud ;
Shabanian, Seyed Reza .
FLUID PHASE EQUILIBRIA, 2012, 331 :48-57
[5]   Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipitis [J].
Bellido, Carolina ;
Gonzalez-Benito, Gerardo ;
Coca, Monica ;
Lucas, Susana ;
Teresa Garcia-Cubero, Maria .
BIORESOURCE TECHNOLOGY, 2013, 133 :51-58
[6]   Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid [J].
Bustos, G ;
Ramírez, JA ;
Garrote, G ;
Vázquez, M .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2003, 104 (01) :51-68
[7]   Production of bioethanol from sugarcane bagasse: Status and perspectives [J].
Cardona, C. A. ;
Quintero, J. A. ;
Paz, I. C. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4754-4766
[8]   Acceleration tests using gasolines formulated with di-TAE, TAEE and MTBE ethers [J].
Cataluna, Renato ;
Dalavia, Diocles ;
da Silva, Rosangela ;
Menezes, Eliana ;
Venturi, Vanessa ;
Wagner, Rafael .
FUEL, 2011, 90 (03) :992-996
[9]   Artificial Neural Network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids [J].
Eslamimanesh, Ali ;
Gharagheizi, Farhad ;
Mohammadi, Amir H. ;
Richon, Dominique .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (13) :3039-3044
[10]   A neural network-based method for estimation of binary gas diffusivity [J].
Eslamloueyan, R. ;
Khademi, M. H. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 104 (02) :195-204