Boundary layer correctors for the solution of Laplace equation in a domain with oscillating boundary

被引:0
作者
Amirat, Y [1 ]
Bodart, O [1 ]
机构
[1] Univ Clermont Ferrand, Lab Math Appl, CNRS, UMR 6620, F-63177 Aubiere, France
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2001年 / 20卷 / 04期
关键词
asymptotic behaviour; oscillating boundary; boundary layers;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behaviour of the solution of Laplace equation in a domain with very rapidly oscillating boundary. The motivation comes from the study of a longitudinal flow in an infinite horizontal domain bounded at the bottom by a plane wall and at the top by a rugose wall. The rugose wall is a plane covered with periodic asperities which size depends on a small parameter epsilon > 0. The assumption of sharp asperities is made, that is the height of the asperities does not vanish as epsilon --> 0. We prove that, up to an exponentially decreasing error, the solution of Laplace equation can be approximated, outside a layer of width 2epsilon, by a non-oscillating explicit function.
引用
收藏
页码:929 / 940
页数:12
相关论文
共 19 条
  • [1] ACHDOU Y, 1995, CR ACAD SCI I-MATH, V320, P541
  • [2] Effective boundary conditions for laminar flows over periodic rough boundaries
    Achdou, Y
    Pironneau, O
    Valentin, F
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) : 187 - 218
  • [3] Allaire G., 1999, ESAIM CONTR OPTIM CA, V4, P209
  • [4] AMIRAT Y, 1997, CONT MATH AMS, P9
  • [5] AMIRAT Y, IN PRESS Q APPL MATH
  • [6] Brizzi R, 1997, RIC MAT, V46, P341
  • [7] The boundary-value problem in domains with very rapidly oscillating boundary
    Chechkin, GA
    Friedman, A
    Piatnitski, AL
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (01) : 213 - 234
  • [8] Galdi G.P., 1994, INTRO MATH THEORY NA, VI
  • [9] Galdi GP, 1994, INTRO MATH THEORY NA, VII
  • [10] HRUSLOV EJ, 1972, MATH USSR SB, V88, P37