Theoretical studies of graphene nanoribbon quantum dot qubits

被引:24
作者
Chen, Chih-Chieh [1 ,2 ]
Chang, Yia-Chung [2 ,3 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[3] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 24期
关键词
SPIN QUBITS; COMPUTER; GRAPHITE;
D O I
10.1103/PhysRevB.92.245406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene nanoribbon quantum dot qubits have been proposed as promising candidates for quantum computing applications to overcome the spin-decoherence problems associated with typical semiconductor (e.g., GaAs) quantum dot qubits. We perform theoretical studies of the electronic structures of graphene nanoribbon quantum dots by solving the Dirac equation with appropriate boundary conditions. We then evaluate the exchange splitting based on an unrestricted Hartree-Fock method for the Dirac particles. The electronic wave function and long-range exchange coupling due to the Klein tunneling and the Coulomb interaction are calculated for various gate configurations. It is found that the exchange coupling between qubits can be significantly enhanced by the Klein tunneling effect. The implications of our results for practical qubit construction and operation are discussed.
引用
收藏
页数:8
相关论文
共 43 条
[31]   Singlet-triplet (S0 → T1) excitation energies of the [4 x n] rectangular graphene nanoribbon series (n=2-6): A comparative theoretical study [J].
Rayne, Sierra ;
Forest, Kaya .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2011, 977 (1-3) :163-167
[32]   Quantum dots and spin qubits in graphene [J].
Recher, Patrik ;
Trauzettel, Bjoern .
NANOTECHNOLOGY, 2010, 21 (30)
[33]   The Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite [J].
Reed, James P. ;
Uchoa, Bruno ;
Joe, Young Il ;
Gan, Yu ;
Casa, Diego ;
Fradkin, Eduardo ;
Abbamonte, Peter .
SCIENCE, 2010, 330 (6005) :805-808
[34]   Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots [J].
Schliemann, J ;
Loss, D ;
MacDonald, AH .
PHYSICAL REVIEW B, 2001, 63 (08)
[35]   CONDENSED-MATTER SIMULATION OF A 3-DIMENSIONAL ANOMALY [J].
SEMENOFF, GW .
PHYSICAL REVIEW LETTERS, 1984, 53 (26) :2449-2452
[36]   Fast coherent manipulation of three-electron states in a double quantum dot [J].
Shi, Zhan ;
Simmons, C. B. ;
Ward, Daniel R. ;
Prance, J. R. ;
Wu, Xian ;
Koh, Teck Seng ;
Gamble, John King ;
Savage, D. E. ;
Lagally, M. G. ;
Friesen, Mark ;
Coppersmith, S. N. ;
Eriksson, M. A. .
NATURE COMMUNICATIONS, 2014, 5
[37]  
Shor PW, 1997, SIAM J COMPUT, V26, P1484, DOI [10.1137/S0097539795293172, 10.1137/S0036144598347011]
[38]   Quantum dots in graphene [J].
Silvestrov, P. G. ;
Efetov, K. B. .
PHYSICAL REVIEW LETTERS, 2007, 98 (01)
[39]   Energy Gaps in Etched Graphene Nanoribbons [J].
Stampfer, C. ;
Guettinger, J. ;
Hellmueller, S. ;
Molitor, F. ;
Ensslin, K. ;
Ihn, T. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[40]   Effective time-reversal symmetry breaking in the spin relaxation in a graphene quantum dot [J].
Struck, P. R. ;
Burkard, Guido .
PHYSICAL REVIEW B, 2010, 82 (12)