On the Ζl-rank of abelian extensions with restricted ramification

被引:8
作者
Maire, C [1 ]
机构
[1] Univ Bordeaux 1, Lab A2X, F-33405 Talence, France
基金
美国国家科学基金会;
关键词
S-ramification; Zeta(l)-rank; Schanuel l-adic conjecture;
D O I
10.1006/jnth.2001.2712
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime number l, we consider l-extensions k(S) of number fields k unramified outside a finite set S subset of S-l of places of k, and we study the Z(l)-rank of the abelian part of k(S)/k and the number of relations of the Galois group G(S) := Gal(k(S)/k). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:376 / 404
页数:29
相关论文
共 24 条
  • [1] ON UNITS OF ALGEBRAIC NUMBER FIELDS
    BRUMER, A
    [J]. MATHEMATIKA, 1967, 14 (28P2) : 121 - &
  • [2] CURTIS WC, 1962, REPRESENTATION THEOR
  • [3] Do Nguyen Quang T., 1986, Ann. Inst. Fourier (Grenoble), V36, P27, DOI [10.5802/aif.1045, DOI 10.5802/AIF.104520]
  • [4] GRAS G, UNPUB PRATIQUE CORPS
  • [5] Gras Georges, 1998, J THEOR NOMBR BORDX, V10, P399
  • [6] Jaulent J.-F., 2000, J NUMBER THEORY, V80, P318
  • [7] Pro-l-extensions of I-rational number fields
    Jaulent, JF
    Sauzet, O
    [J]. JOURNAL OF NUMBER THEORY, 1997, 65 (02) : 240 - 267
  • [8] 2-Birational CM-extensions of totally real number fields
    Jaulent, JF
    Sauzet, O
    [J]. PUBLICACIONS MATEMATIQUES, 2000, 44 (01) : 343 - 353
  • [9] L-ADIC INDEPENDENCE OF ALGEBRAIC-NUMBERS
    JAULENT, JF
    [J]. JOURNAL OF NUMBER THEORY, 1985, 20 (02) : 149 - 158
  • [10] KOCH H, 1978, P EXTENSION GIVEN RA, P89