Mn-doped ZnO microspheres prepared by solution combustion synthesis for room temperature NH3 sensing

被引:30
作者
Ramesh, Asha [1 ]
Gavaskar, D. S. [2 ]
Nagaraju, P. [3 ]
Duvvuri, Suryakala [4 ]
Vanjari, S. R. K. [5 ]
Subrahmanyam, C. [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502285, Telangana, India
[2] Osmania Univ, Dept Phys, Hyderabad 500007, Telangana, India
[3] CMR Tech Campus, Dept Phys, Hyderabad 501401, Telangana, India
[4] GITAM Univ, Dept Chem, Visakhapatnam 530045, Andhra Pradesh, India
[5] Indian Inst Technol Hyderabad, Dept Elect Engn, Sangareddy 502285, Telangana, India
来源
APPLIED SURFACE SCIENCE ADVANCES | 2022年 / 12卷
关键词
Ammonia; Gas sensor; Transition metal doping; Surface acidity; Mn-doped ZnO; Room temperature sensing; GAS SENSOR; OPTICAL-PROPERTIES; OXYGEN VACANCIES; AMMONIA SENSOR; NANOSTRUCTURES; NANOPARTICLES; OXIDE;
D O I
10.1016/j.apsadv.2022.100349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite being the most favorable ammonia (NH3) gas sensors, metal oxide semiconductors fail to deliver high selectivity and room temperature (RT) sensing. Tuning the metal oxide with doping is an attractive way of overcoming these disadvantages. Herein, we report Mn-doped ZnO microspheres as promising sensors for highly sensitive and selective RT sensing of NH3. ZnO and 2 wt% Mn-doped ZnO microspheres were synthesized by a low-cost and fast solution combustion synthesis, and their structure, morphology, and gas sensing properties were investigated. Mn-doping resulted in a change in the lattice parameters, an increase in the oxygen vacancies, and surface acidity of ZnO as confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Temperature programmed desorption (TPD), respectively. Mn-doped ZnO showed a response (Ra/Rg) of 20.2 in 100 ppm NH3, which is significantly higher than ZnO. The sensor showed high selectivity, three times higher than that of ZnO, and good stability. Improvement in the sensing performance of Mn-doped ZnO is attributed to the increase in the defects and surface acidity with Mn-doping.
引用
收藏
页数:11
相关论文
共 71 条
[1]   Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review [J].
Al-Hashem, Mohamad ;
Akbar, Sheikh ;
Morris, Patricia .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 301
[2]   Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery [J].
Amiri, Mahnaz ;
Salavati-Niasari, Masoud ;
Pardakhty, Abbas ;
Ahmadi, Meysam ;
Akbari, Ahmad .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 76 :1085-1093
[3]   Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method [J].
Anbuselvan, D. ;
Muthukumaran, S. .
OPTICAL MATERIALS, 2015, 42 :124-131
[4]   A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases [J].
Bartlett, PN ;
Guerin, S .
ANALYTICAL CHEMISTRY, 2003, 75 (01) :126-132
[5]   Investigations on structural, optical and dielectric properties of Mn doped ZnO nanoparticles synthesized by co-precipitation method [J].
Belkhaoui, Chadia ;
Mzabi, Nissaf ;
Smaoui, Hichem .
MATERIALS RESEARCH BULLETIN, 2019, 111 :70-79
[6]   Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review [J].
Bhati, Vijendra Singh ;
Hojamberdiev, Mirabbos ;
Kumar, Mahesh .
ENERGY REPORTS, 2020, 6 (06) :46-62
[7]   Highly selective and sensitive WO3 nanoflakes based ammonia sensor [J].
Buyukkose, Serkan .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 110
[8]   Simple, Low-Temperature Route To Synthesize ZnO Nanoparticles and Their Optical Neuromorphic Characteristics [J].
Chandra, Ramachandrapanicker Devi ;
Gopchandran, Kunnel Gopalan .
ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (09) :3846-3854
[9]   Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods [J].
Chang, Feng-Ming ;
Brahma, Sanjaya ;
Huang, Jing-Heng ;
Wu, Zong-Zhe ;
Lo, Kuang-Yao .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films [J].
Claros, Martha ;
Setka, Milena ;
Jimenez, Yecid P. ;
Vallejos, Stella .
NANOMATERIALS, 2020, 10 (03)