3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

被引:151
作者
Ren, Long [1 ,2 ,5 ]
Hui, K. N. [3 ]
Hui, K. S. [4 ]
Liu, Yundan [1 ,2 ]
Qi, Xiang [1 ,2 ]
Zhong, Jianxin [1 ,2 ]
Du, Yi [5 ]
Yang, Jianping [5 ,6 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Taipa, Macau, Peoples R China
[4] Hanyang Univ, Dept Mech Convergence Engn, Seoul 133791, South Korea
[5] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, North Wollongong, NSW 2500, Australia
[6] Tongji Univ, State Key Lab Pollut Control & Resources Reuse, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
澳大利亚研究理事会; 新加坡国家研究基金会;
关键词
ANODE MATERIALS; HIGH-CAPACITY; HIGH-POWER; REDUCED GRAPHENE; LITHIUM; ELECTRODES; OXIDE; SUPERCAPACITORS; NETWORKS; NANOARCHITECTURES;
D O I
10.1038/srep14229
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable mesopores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hierarchical Porous MXene QDs/Graphene Composite Fibers for High-Performance Supercapacitors
    Jia, Xiaoyu
    Du, Yuan
    Xie, Fanyu
    Lin, Binze
    Cao, Hui
    Li, Hongwei
    Zhang, Mei
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (02): : 975 - 982
  • [22] Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage
    Du, Yichen
    Zhu, Xiaoshu
    Zhou, Xiaosi
    Hu, Lingyun
    Dai, Zhihui
    Bao, Jianchun
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) : 6787 - 6791
  • [23] 3D Graphene Composites for Efficient Electrochemical Energy Storage
    Bu, Fanxing
    Shakir, Imran
    Xu, Yuxi
    ADVANCED MATERIALS INTERFACES, 2018, 5 (15):
  • [24] Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors
    Iamprasertkun, Pawin
    Krittayavathananon, Atiweena
    Seubsai, Anusorn
    Chanlek, Narong
    Kidkhunthod, Pinit
    Sangthong, Winyoo
    Maensiri, Santi
    Yimnirun, Rattikorn
    Nilmoung, Sukanya
    Pannopard, Panvika
    Ittisanronnachai, Somlak
    Kongpatpanich, Kanokwan
    Limtrakul, Jumras
    Sawangphruk, Montree
    SCIENTIFIC REPORTS, 2016, 6
  • [25] Construction of hierarchical porous derived from the cellulose nanofiber/graphene/Zn/Co ZIF 3D conductive carbon aerogels for high-performance supercapacitors
    Yan, Chunxia
    Jia, Shuai
    Wei, Jie
    Shao, Ziqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 920
  • [26] Integrated Polypyrrole@Sulfur@Graphene Aerogel 3D Architecture via Advanced Vapor Polymerization for High-Performance Lithium-Sulfur Batteries
    Tang, Hu
    You, Lei
    Liu, Jianwen
    Wang, Shiquan
    Wang, Pengyu
    Feng, Chuanqi
    Guo, Zaiping
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) : 18448 - 18455
  • [27] Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries
    Wang, Xiongwei
    Zhang, Ludan
    Zhang, Zehui
    Yu, Aishui
    Wu, Peiyi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (05) : 3893 - 3899
  • [28] Design of 3D Graphene-Oxide Spheres and Their Derived Hierarchical Porous Structures for High Performance Supercapacitors
    Li, Zhuangnan
    Gadipelli, Srinivas
    Yang, Yuchen
    Guo, Zhengxiao
    SMALL, 2017, 13 (44)
  • [29] 3D graphene based materials for energy storage
    Fan, Xueliu
    Chen, Xuli
    Dai, Liming
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2015, 20 (5-6) : 429 - 438
  • [30] Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application
    Ma, Cunliang
    Peng, Li
    Feng, Yafei
    Shen, Jiaxin
    Xiao, Zhuangqing
    Cai, Kaiyu
    Yu, Youhai
    Min, Yong
    Epstein, Arthur J.
    SYNTHETIC METALS, 2016, 220 : 227 - 235