Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center

被引:139
作者
Feigin, B. L.
Gainutdinov, A. M.
Semikhatov, A. M.
Tipunin, I. Yu.
机构
[1] LD Landau Theoret Phys Inst, Moscow 119334, Russia
[2] Moscow MV Lomonosov State Univ, Dept Phys, Moscow, Russia
[3] PN Lebedev Phys Inst, Moscow 119991, Russia
关键词
D O I
10.1007/s00220-006-1551-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The SL(2, Z)-representation pi on the center of the restricted quantum group (U) over bar (q)sl(2) at the primitive 2p(th) root of unity is shown to be equivalent to the SL(2, Z)-representation on the extended characters of the logarithmic (1, p) conformal field theory model. The multiplicative Jordan decomposition of the (U) over bar (q)sl(2) ribbon element determines the decomposition of pi into a "pointwise" product of two commuting SL(2, Z)-representations, one of which restricts to the Grothendieck ring; this restriction is equivalent to the SL(2, Z)-representation on the (1, p)-characters, related to the fusion algebra via a nonsemisimple Verlinde formula. The Grothendieck ring of (U) over bar (q)sl(2) at the primitive 2pth root of unity is shown to coincide with the fusion algebra of the ( 1, p) logarithmic conformal field theory model. As a by-product, we derive q-binomial identities implied by the fusion algebra realized in the center of (U) over bar (q)sl(2).
引用
收藏
页码:47 / 93
页数:47
相关论文
共 44 条
[1]  
Bakalov B., 2001, LECT TENSOR CATEGORI
[2]  
Chari V., 1995, A Guide to Quantum Groups
[3]  
Drinfeld V.G., 1990, Leningrad Math. J., V2, P321
[4]  
FEIGIN BL, MATHQA0512621 CFT
[5]   An equivalence of fusion categories [J].
Finkelberg, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (02) :249-267
[6]   Logarithmic conformal field theories via logarithmic deformations [J].
Fjelstad, J ;
Fuchs, J ;
Hwang, S ;
Semikhatov, AM ;
Tipunin, IY .
NUCLEAR PHYSICS B, 2002, 633 (03) :379-413
[7]   Bits and pieces in logarithmic conformal field theory [J].
Flohr, MAI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (25) :4497-4591
[8]   On fusion rules in logarithmic conformal field theories [J].
Flohr, MAI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (10) :1943-1958
[9]   On modular invariant partition functions of conformal field theories with logarithmic operators [J].
Flohr, MAI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (22) :4147-4172
[10]  
Fuchs E, 2002, NUCL PHYS B, V646, P353, DOI 10.1016/S0550-3213(02)00744-7