Tuning the strain-induced resonance shift in silicon racetrack resonators by their orientation

被引:7
作者
Castellan, Claudio [1 ]
Chalyan, Astghik [1 ,2 ]
Mancinelli, Mattia [1 ,3 ]
Guilleme, Pierre [1 ]
Borghi, Massimo [1 ]
Bosia, Federico [4 ,5 ]
Pugno, Nicola M. [6 ,7 ,8 ]
Bernard, Martino [9 ]
Ghulinyan, Mher [9 ]
Pucker, Georg [9 ]
Pavesi, Lorenzo [1 ]
机构
[1] Univ Trento, Dept Phys, Nanosci Lab, Via Sommarive 14, I-38123 Trento, Italy
[2] Russian Armenian Slavonic Univ, H Emin 123, Yerevan 0051, Armenia
[3] SM Opt Srl, Res Programs, Via John Fitzgerald Kennedy 2, I-20871 Vimercate, Italy
[4] Univ Turin, Dept Phys, Via Pietro Giuria 1, I-10125 Turin, Italy
[5] Univ Turin, Nanostruct Interfaces & Surfaces Ctr, Via Pietro Giuria 1, I-10125 Turin, Italy
[6] Univ Trento, Lab Bioinspired & Graphene Nanomech, Dept Civil Environm & Mech Engn, Via Mesiano 77, I-38123 Trento, Italy
[7] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[8] Italian Space Agcy, Edoardo Amaldi Fdn, Ket Lab, Via Politecn Snc, I-00133 Rome, Italy
[9] Fdn Bruno Kessler, Ctr Mat & Microsyst, Via Sommarive 18, I-38123 Trento, Italy
基金
欧盟地平线“2020”;
关键词
PHOTONIC DEVICES; WAVE-GUIDES;
D O I
10.1364/OE.26.004204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we analyze the role of strain on a set of silicon racetrack resonators presenting different orientations with respect to the applied strain. The strain induces a variation of the resonance wavelength, caused by the photoelastic variation of the material refractive index as well as by the mechanical deformation of the device. In particular, the mechanical deformation alters both the resonator perimeter and the waveguide cross-section. Finite element simulations taking into account all these effects are presented, providing good agreement with experimental results. By studying the role of the resonator orientation we identify interesting features, such as the tuning of the resonance shift from negative to positive values and the possibility of realizing strain insensitive devices. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:4204 / 4218
页数:15
相关论文
共 24 条
[1]   Photoelastic effect in silicon ring resonators [J].
Amemiya, Yoshiteru ;
Tanushi, Yuichiro ;
Tokunaga, Tomohiro ;
Yokoyama, Shin .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (04) :2910-2914
[2]  
Beer F.P., 2006, Mechanics of Materials
[3]   Nonlinear silicon photonics [J].
Borghi, M. ;
Castellan, C. ;
Signorini, S. ;
Trenti, A. ;
Pavesi, L. .
JOURNAL OF OPTICS, 2017, 19 (09)
[4]   High-frequency electro-optic measurement of strained silicon racetrack resonators [J].
Borghi, M. ;
Mancinelli, M. ;
Merget, F. ;
Witzens, J. ;
Bernard, M. ;
Ghulinyan, M. ;
Pucker, G. ;
Pavesi, L. .
OPTICS LETTERS, 2015, 40 (22) :5287-5290
[5]   Flexible and tunable silicon photonic circuits on plastic substrates [J].
Chen, Yu ;
Li, Huan ;
Li, Mo .
SCIENTIFIC REPORTS, 2012, 2
[6]   High-Performance Flexible Waveguiding Photovoltaics [J].
Chou, Chun-Hsien ;
Chuang, Jui-Kang ;
Chen, Fang-Chung .
SCIENTIFIC REPORTS, 2013, 3
[7]   Polarization management for silicon photonic integrated circuits [J].
Dai, Daoxin ;
Liu, Liu ;
Gao, Shiming ;
Xu, Dan-Xia ;
He, Sailing .
LASER & PHOTONICS REVIEWS, 2013, 7 (03) :303-328
[8]   Comparison of tensile and bulge tests for thin-film silicon nitride [J].
Edwards, RL ;
Coles, G ;
Sharpe, WN .
EXPERIMENTAL MECHANICS, 2004, 44 (01) :49-54
[9]   Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing [J].
Fan, Li ;
Varghese, Leo T. ;
Xuan, Yi ;
Wang, Jian ;
Niu, Ben ;
Qi, Minghao .
OPTICS EXPRESS, 2012, 20 (18) :20564-20575
[10]   Silicon photonics: from a microresonator perspective [J].
Feng, Shaoqi ;
Lei, Ting ;
Chen, Hui ;
Cai, Hong ;
Luo, Xianshu ;
Poon, Andrew W. .
LASER & PHOTONICS REVIEWS, 2012, 6 (02) :145-177