DIMENSION OF SLICES THROUGH A SELF-SIMILAR SET WITH INITIAL CUBIC PATTERN

被引:3
作者
Wen, Zhixiong [1 ]
Wu, Wen [1 ]
Xi, Lifeng [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
关键词
Self-similar set; slice; Hausdorff dimension; box dimension;
D O I
10.5186/aasfm.2013.3836
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a sufficient condition to ensure that the typical Hausdorff dimension of slices through a self-similar set in a fixed direction takes the value in Marstrand's theorem, i.e., the dimension of the self-similar set minus one.
引用
收藏
页码:473 / 487
页数:15
相关论文
共 12 条
  • [1] [Anonymous], 1995, Geometry of Sets and Measures in Euclidean Spaces
  • [2] Slicing the Sierpinski gasket
    Barany, Balazs
    Ferguson, Andrew
    Simon, Karoly
    [J]. NONLINEARITY, 2012, 25 (06) : 1753 - 1770
  • [3] BENJAMINI I, 1991, ISRAEL J MATH, V74, P267
  • [4] SOME ALGEBRAIC PROPERTIES OF SMALL SETS
    HAWKES, J
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1975, 26 (102) : 195 - 201
  • [5] FRACTALS AND SELF SIMILARITY
    HUTCHINSON, JE
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) : 713 - 747
  • [6] INTERSECTING RANDOM TRANSLATES OF INVARIANT CANTOR SETS
    KENYON, R
    PERES, Y
    [J]. INVENTIONES MATHEMATICAE, 1991, 104 (03) : 601 - 629
  • [7] Dimensions of intersections of the Sierpinski carpet with lines of rational slopes
    Liu, Qing-Hui
    Xi, Li-Feng
    Zha, Yan-Fen
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 411 - 427
  • [8] Manning A, 2013, T AM MATH SOC, V365, P213
  • [9] Marstrand J., 1954, Proc. London Math. Soc., V3, P257, DOI [DOI 10.1112/PLMS/S3-4.1.257, 10.1112/plms/s3-4.1.257]
  • [10] Measure and dimension functions: Measurability and densities
    Mattila, P
    Mauldin, RD
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 121 : 81 - 100