Relaxation Processes and the Maximum Entropy Production Principle

被引:8
|
作者
Zupanovic, Pasko [1 ]
Botric, Srecko [2 ]
Juretic, Davor [1 ]
Kuic, Domagoj [1 ]
机构
[1] Univ Split, Fac Sci, Teslina 12, Split 21000, Croatia
[2] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split 21000, Croatia
来源
ENTROPY | 2010年 / 12卷 / 03期
关键词
relaxation processes; MEP principle; MaxEnt formalism;
D O I
10.3390/e12030473
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spontaneous transitions of an isolated system from one macroscopic state to another (relaxation processes) are accompanied by a change of entropy. Following Jaynes' MaxEnt formalism, it is shown that practically all the possible microscopic developments of a system, within a fixed time interval, are accompanied by the maximum possible entropy change. In other words relaxation processes are accompanied by maximum entropy production.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 50 条
  • [31] The latent maximum entropy principle
    Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States
    不详
    不详
    ACM Trans. Knowl. Discov. Data, 2
  • [32] The principle of the maximum entropy method
    Sakata, M
    Takata, M
    HIGH PRESSURE RESEARCH, 1996, 14 (4-6) : 327 - 333
  • [33] THE MAXIMUM-ENTROPY PRINCIPLE
    FELLGETT, PB
    KYBERNETES, 1987, 16 (02) : 125 - 125
  • [34] MAXIMUM-ENTROPY PRINCIPLE
    BALASUBRAMANIAN, V
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1984, 35 (03): : 153 - 153
  • [35] MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION
    Bilich, F.
    DaSilva, R.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 252 - +
  • [36] The Latent Maximum Entropy Principle
    Wang, Shaojun
    Schuurmans, Dale
    Zhao, Yunxin
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (02)
  • [37] Generalized maximum entropy principle
    Kesavan, H.K., 1600, (19):
  • [38] Metasystems and the maximum entropy principle
    Pittarelli, M
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1996, 24 (1-2) : 191 - 206
  • [39] THE PRINCIPLE OF MAXIMUM-ENTROPY
    GUIASU, S
    SHENITZER, A
    MATHEMATICAL INTELLIGENCER, 1985, 7 (01): : 42 - 48
  • [40] The latent maximum entropy principle
    Wang, SJ
    Rosenfeld, R
    Zhao, YX
    Schuurmans, D
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 131 - 131