A version of Smoluchowski's coagulation equation with gelation

被引:0
|
作者
Heilmann, OJ [1 ]
机构
[1] Univ Copenhagen, HC Orsted Inst, Dept Chem, DK-2100 Copenhagen O, Denmark
来源
关键词
D O I
10.1088/0305-4470/32/33/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We assume the rate constants of Smoluchowski's coagulation equation to be of the form, K-i,K-j = a(i) . a(j)/[a(i) + a(j) - a(i + j)]. If a(i)/i > K > 0 for all i then the model will have gelation (provided the solution exists). If a(i)/i --> 0 as i --> infinity it is then suggested that the model will not have gelation.
引用
收藏
页码:6115 / 6118
页数:4
相关论文
共 50 条
  • [1] Instantaneous gelation in Smoluchowski's coagulation equation revisited
    Ball, Robin C.
    Connaughton, Colm
    Stein, Thorwald H. M.
    Zaboronski, Oleg
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [2] BROWNIAN COAGULATION AND A VERSION OF SMOLUCHOWSKI'S EQUATION ON THE CIRCLE
    Armendariz, Ines
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (02): : 660 - 695
  • [3] ON THE OCCURRENCE OF A GELATION TRANSITION IN SMOLUCHOWSKI COAGULATION EQUATION
    VANDONGEN, PGJ
    ERNST, MH
    JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (5-6) : 785 - 792
  • [4] ON THE POSSIBLE OCCURRENCE OF INSTANTANEOUS GELATION IN SMOLUCHOWSKI COAGULATION EQUATION
    VANDONGEN, PGJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07): : 1889 - 1904
  • [5] ON SMOLUCHOWSKI COAGULATION EQUATION
    KOKHOLM, NJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (03): : 839 - 842
  • [6] Smoluchowski’s discrete coagulation equation with forcing
    Christian Kuehn
    Sebastian Throm
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [7] Analysis of Smoluchowski's Coagulation Equation with Injection
    Makoveeva, Eugenya, V
    Alexandrov, Dmitri, V
    Fedotov, Sergei P.
    CRYSTALS, 2022, 12 (08)
  • [8] Smoluchowski's discrete coagulation equation with forcing
    Kuehn, Christian
    Throm, Sebastian
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (03):
  • [9] A generalization of the Smoluchowski coagulation equation
    Hemmer, PC
    POLISH JOURNAL OF CHEMISTRY, 2001, 75 (04) : 571 - 577
  • [10] Contractivity for Smoluchowski's coagulation equation with solvable kernels
    Canizo, Jose A.
    Lods, Bertrand
    Throm, Sebastian
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (01) : 248 - 258