COMPARISON OF MACROMOLECULAR COMPONENT DISTRIBUTIONS IN OSTEOARTHRITIC AND HEALTHY CARTILAGES BY FOURIER TRANSFORM INFRARED IMAGING

被引:6
作者
Yin, Jianhua [1 ]
Xia, Yang [2 ,3 ]
Xiao, Zhiyan [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Biomed Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[3] Oakland Univ, Ctr Biomed Res, Rochester, MI 48309 USA
[4] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO 63110 USA
基金
美国国家卫生研究院;
关键词
Macromolecular component; osteoarthritis; articular cartilage; Fourier transform infrared imaging (FTIRI); POLARIZED-LIGHT MICROSCOPY; ARTICULAR-CARTILAGE; PROTEOGLYCAN; COLLAGEN;
D O I
10.1142/S179354581350048X
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fourier transform infrared imaging (FTIRI) was used to examine the depth-dependent content variations of macromolecular components, collagen and proteoglycan (PG), in osteoarthritic and healthy cartilages. Dried 6 mu m thick sections of canine knee cartilages were imaged at 6.25 mu m pixel-size in FTIRI. By analyzing the infrared (IR) images and spectra, the depth dependence of characteristic band (sugar) intensity of PG show obvious difference between the cartilage sections of (OA) and health. The result confirms that PG content decreases in the osteoarthritic cartilage. However, no clear change occurs to collagen, suggesting that the OA influences little on the collagen content at early stage of OA. This observation will be helpful to further understand PG loss associated with pathological conditions in OA, and demonstrates that FTIRI has the potential to become an important analytical tool to identify early clinical signs of tissue degradation, such as PG loss even collagen disruption.
引用
收藏
页数:7
相关论文
共 21 条
  • [1] Fourier transform infrared imaging and MR microscopy studies detect compositional and structural changes in cartilage in a rabbit model of osteoarthritis
    Bi, Xiaohong
    Yang, Xu
    Bostrom, Mathias P. G.
    Bartusik, Dorota
    Ramaswamy, Sharan
    Fishbein, Kenneth W.
    Spencer, Richard G.
    Camacho, Nancy Pleshko
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 387 (05) : 1601 - 1612
  • [2] Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage
    Bi, Xiaohong
    Yang, Xu
    Bostrom, Mathias P. G.
    Camacho, Nancy Pleshko
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (07): : 934 - 941
  • [3] BRANDT KD, 1986, J RHEUMATOL, V13, P1126
  • [4] Articular cartilage .1. Tissue design and chondrocyte-matrix interactions
    Buckwalter, JA
    Mankin, HJ
    [J]. JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (04) : 600 - 611
  • [5] Fourier Transform Infrared Imaging Analysis of Cancellous Bone in Alendronate- and Raloxifene-Treated Osteopenic Sheep
    Calton, Ericka F.
    MacLeay, Jennifer
    Boskey, Adele L.
    [J]. CELLS TISSUES ORGANS, 2011, 194 (2-4) : 302 - 306
  • [6] Camacho NP, 2001, BIOPOLYMERS, V62, P1, DOI 10.1002/1097-0282(2001)62:1<1::AID-BIP10>3.0.CO
  • [7] 2-O
  • [8] Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density
    Chen, SS
    Falcovitz, YH
    Schneiderman, R
    Maroudas, A
    Sah, RL
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2001, 9 (06) : 561 - 569
  • [9] Hu J.C. Y., 2003, Handbook of Histology Methods for Bone and Cartilage, P73, DOI [DOI 10.1007/978-1-59259-417-7_4, 10.1385/1-59259-417-4:73, DOI 10.1385/1-59259-417-4:73]
  • [10] Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging
    Lee, J. I. Hyun
    Xia, Yang
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2013, 76 (06) : 625 - 632