Information-theoretic Frontier Selection for Environment Exploration

被引:1
|
作者
Pimentel, Jhielson M. [1 ]
Macharet, Douglas G. [1 ]
Campos, Mario F. M. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, Comp Vision & Robot Lab VeRLab, Belo Horizonte, MG, Brazil
关键词
D O I
10.1109/LARS-SBR.2016.38
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The exploration of unknown environments using autonomous mobile robots is essential for different applications, for example, search and rescue missions. The main objective is to efficiently transverse the environment and build a complete and accurate map. However, different applications may demand different exploration strategies. The simplest strategy is a greedy approach which visits the closest frontier without considering if it will yield a significant reduction in map uncertainty. In this paper, we propose a novel method to predict information beyond the candidate frontiers by analyzing the local structure. Next, the utility function chooses a candidate locations using Shannon entropy. The methodology was evaluated through several experiments in a simulated environment, showing that our exploration approach is better suited for rapid exploration than the classic Near-Frontier Exploration (NFE).
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [21] Information-theoretic feature selection for the classification of hysteresis curves
    Gomez-Verdejo, Vanessa
    Verleysen, Michel
    Fleury, Jerome
    COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 522 - +
  • [22] Information-Theoretic Dataset Selection for Fast Kernel Learning
    Paiva, Antonio R. C.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2088 - 2095
  • [23] Information-theoretic feature selection algorithms for text classification
    Novovicová, J
    Malík, A
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 3272 - 3277
  • [24] Information-theoretic method for wavelength selection in bioluminescence tomography
    Basevi, Hector R. A.
    Guggenheim, James A.
    Dehghani, Hamid
    Styles, Iain B.
    DIFFUSE OPTICAL IMAGING IV, 2013, 8799
  • [25] Information-theoretic feature selection with discrete -median clustering
    Seref, Onur
    Fan, Ya-Ju
    Borenstein, Elan
    Chaovalitwongse, Wanpracha A.
    ANNALS OF OPERATIONS RESEARCH, 2018, 263 (1-2) : 93 - 118
  • [26] An information-theoretic perspective on feature selection in speaker recognition
    Eriksson, T
    Kim, S
    Kang, HG
    Lee, C
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (07) : 500 - 503
  • [27] Information-theoretic feature selection for functional data classification
    Gomez-Verdejo, Vanessa
    Verleysen, Michel
    Fleury, Jerome
    NEUROCOMPUTING, 2009, 72 (16-18) : 3580 - 3589
  • [28] Information-theoretic feature selection for a neural behavioral model
    Chambless, B
    Scarborough, D
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1443 - 1448
  • [29] Attack Transferability Against Information-Theoretic Feature Selection
    Gupta, Srishti
    Golota, Roman
    Ditzler, Gregory
    IEEE ACCESS, 2021, 9 : 115885 - 115894
  • [30] Optimal Selection of Traffic Sensors: An Information-Theoretic Framework
    Jusoh, Ruzanna Mat
    Ampountolas, Konstantinos
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 3297 - 3302