Modeling Graphene in the Finite-Difference Time-Domain Method Using a Surface Boundary Condition

被引:145
作者
Nayyeri, Vahid [1 ,2 ]
Soleimani, Mohammad [2 ]
Ramahi, Omar M. [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Iran Univ Sci & Technol, Sch Elect Engn, Tehran 16844, Iran
基金
加拿大自然科学与工程研究理事会;
关键词
Finite-difference time-domain (FDTD); graphene; surface boundary condition; FDTD; IMPLEMENTATION; SHEETS;
D O I
10.1109/TAP.2013.2260517
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An effective approach for finite-difference time-domain modeling of graphene as a conducting sheet is proposed. First, we present a new technique for implementing a conducting surface boundary condition in the FDTD method; then, the dispersive surface conductivity of graphene is imposed. Numerical examples are presented to show the stability, accuracy, applicability, and advantages of the proposed approach. Validation is achieved by comparison with existing analytic methods.
引用
收藏
页码:4176 / 4182
页数:7
相关论文
共 32 条
[1]   Semianalytic solution to the problem of scattering from multiple cylinders above a perfectly conductive surface [J].
Alavikia, Babak ;
Ramahi, Omar M. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (07) :1489-1495
[2]   Graphene hyperlens for terahertz radiation [J].
Andryieuski, Andrei ;
Lavrinenko, Andrei V. ;
Chigrin, Dmitry N. .
PHYSICAL REVIEW B, 2012, 86 (12)
[3]   FINITE-DIFFERENCE TIME-DOMAIN IMPLEMENTATION OF SURFACE IMPEDANCE BOUNDARY-CONDITIONS [J].
BEGGS, JH ;
LUEBBERS, RJ ;
YEE, KS ;
KUNZ, KS .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (01) :49-56
[4]   Optimal Modeling of Infinite Graphene Sheets via a Class of Generalized FDTD Schemes [J].
Bouzianas, Georgios D. ;
Kantartzis, Nikolaos V. ;
Antonopoulos, Christos S. ;
Tsiboukis, Theodoros D. .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) :379-382
[5]   Optically Transparent and Flexible Graphene Reciprocal and Nonreciprocal Microwave Planar Components [J].
Chamanara, Nima ;
Sounas, Dimitrios ;
Szkopek, Thomas ;
Caloz, Christophe .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (07) :360-362
[6]   Atomically Thin Surface Cloak Using Graphene Monolayers [J].
Chen, Pai-Yen ;
Alu, Andrea .
ACS NANO, 2011, 5 (07) :5855-5863
[7]   Finite-difference time-domain modeling of thin shields [J].
Feliziani, M ;
Maradei, F .
IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) :848-851
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Dyadic Green's functions for an anisotropic, non-local model of biased graphene [J].
Hanson, George W. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (03) :747-757
[10]   Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene [J].
Hanson, George W. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)