Facile Nanopatterning of PEDOT:PSS Thin Films

被引:18
作者
ElMahmoudy, Mohammed [1 ]
Charrier, Anne M. [2 ]
Malliaras, George G. [1 ,3 ]
Sanaur, Sebastien [1 ]
机构
[1] IMT Mines St Etienne, Provence Microelect Ctr, Dept Bioelect, F-13541 Gardanne, France
[2] Aix Marseille Univ, CNRS, CINAM, F-13009 Marseille, France
[3] Univ Cambridge, Dept Engn, Elect Engn Div, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
来源
ADVANCED MATERIALS TECHNOLOGIES | 2018年 / 3卷 / 05期
关键词
low impedance; nanopatterning; organic bioelectronics; PEDOT:PSS; LITHOGRAPHY; EFFICIENCY; INTERFACE; TRANSPORT; POLYMERS; CELL;
D O I
10.1002/admt.201700344
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanopatterned conducting polymer poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) films are obtained using a new, facile fabrication method. In this method, an epoxy supporting layer is used to facilitate the transfer of nanopatterns from a polydimethylsiloxane mold to rigid or flexible substrates. This process overcomes several limitations that are previously introduced when using other nanopatterning techniques such as nanoimprint lithography and capillary force lithography. Two sets of nanopatterned PEDOT:PSS/Gold (Au) electrodes are fabricated with different dimensions: set 1 with 87 nm linewidth, 140 nm pitch, 30 nm depth; and set 2 with 157 nm linewidth, 280 nm pitch, 26 nm depth, respectively. The electrochemical impedance of these electrodes is measured to be lower than that of flat electrodes fabricated following the same process. These findings open the way for fabricating smaller electrodes with reduced impedance. Possible applications can be in the field of biosensing, neural recordings, and interfaces, where decreasing the contact impedance plays a key role.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes [J].
Abidian, Mohammad Reza ;
Martin, David C. .
BIOMATERIALS, 2008, 29 (09) :1273-1283
[2]   Enhancement of organic solar cell efficiency by patterning the PEDOT: PSS hole transport layer using nanoimprint lithography [J].
Choi, Je-Hong ;
Choi, Hak-Jong ;
Shin, Ju-Hyeon ;
Kim, Hyeong-Pil ;
Jang, Jin ;
Lee, Heon .
ORGANIC ELECTRONICS, 2013, 14 (12) :3180-3185
[3]   Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays [J].
Cui, XY ;
Martin, DC .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 89 (1-2) :92-102
[4]   Photolithographic patterning of organic electronic materials [J].
DeFranco, JA ;
Schmidt, BS ;
Lipson, M ;
Malliaras, GG .
ORGANIC ELECTRONICS, 2006, 7 (01) :22-28
[5]   Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics [J].
ElMahmoudy, Mohammed ;
Inal, Sahika ;
Charrier, Anne ;
Uguz, Ilke ;
Malliaras, George G. ;
Sanaur, Sebastien .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2017, 302 (05)
[6]   Low cost patterning of poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency [J].
Emah, J. B. ;
Curry, R. J. ;
Silva, S. R. P. .
APPLIED PHYSICS LETTERS, 2008, 93 (10)
[8]   Flexible thin-film transistors on planarized parylene substrate with recessed individual backgates [J].
Farkas, Balazs ;
Nyberg, Tomas ;
Nanai, Laszlo .
SOLID-STATE ELECTRONICS, 2014, 94 :11-14
[9]   Laminated fabrication of polymeric photovoltaic diodes [J].
Granström, M ;
Petritsch, K ;
Arias, AC ;
Lux, A ;
Andersson, MR ;
Friend, RH .
NATURE, 1998, 395 (6699) :257-260
[10]  
Groenendaal BL, 2000, ADV MATER, V12, P481, DOI 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO