Binary Darboux transformation for the Sasa-Satsuma equation

被引:57
作者
Nimmo, Jonathan J. C. [1 ]
Yilmaz, Halis [1 ,2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland
[2] Dicle Univ, Dept Math, TR-21280 Diyarbakir, Turkey
关键词
Sasa-Satsuma equation; binary Darboux transformation; quasideterminants; NONLINEAR SCHRODINGER-EQUATION; DISPERSIVE DIELECTRIC FIBERS; SOLITON-SOLUTIONS; OPTICAL PULSES; TRANSMISSION; PROPAGATION; WAVES; DARK;
D O I
10.1088/1751-8113/48/42/425202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Sasa-Satsuma equation is an integrable higher-order nonlinear Schrodinger (NLS) equation. Higher-order and multicomponent generalizations of the NLS equation are important in various applications, e.g., in optics. One of these equations is the Sasa-Satsuma equation. We present the binary Darboux transformations (BDTs) for the Sasa-Satsuma equation and then construct its quasigrammians solutions by iterating its BDTs. Single-hump, double-hump, breather and resonant two-solitons solutions are given as explicit examples.
引用
收藏
页数:16
相关论文
共 36 条
[1]  
[Anonymous], SOV PHYS J APPL MECH
[2]   Solitons on a background, rogue waves, and classical soliton solutions of the Sasa-Satsuma equation [J].
Bandelow, U. ;
Akhmediev, N. .
JOURNAL OF OPTICS, 2013, 15 (06)
[3]   Sasa-Satsuma equation: Soliton on a background and its limiting cases [J].
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (02)
[4]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[5]  
BENNEY DJ, 1969, STUD APPL MATH, V48, P377
[6]  
Darboux G., 1882, CR HEBD ACAD SCI, V94, P1456
[7]   Quasideterminants [J].
Gelfand, I ;
Gelfand, S ;
Retakh, V ;
Wilson, RL .
ADVANCES IN MATHEMATICS, 2005, 193 (01) :56-141
[8]   DETERMINANTS OF MATRICES OVER NONCOMMUTATIVE RINGS [J].
GELFAND, IM ;
RETAKH, VS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (02) :91-102
[9]   Soliton solutions, Liouville integrability and gauge equivalence of Sasa Satsuma equation [J].
Ghosh, S ;
Kundu, A ;
Nandy, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) :1993-2000
[10]   Quasi-Grammian Solutions of the Generalized Coupled Dispersionless Integrable System [J].
Haider, Bushra ;
Mahmood-ul Hassan .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8