A characterization of graphs by codes from their incidence matrices

被引:0
作者
Dankelmann, Peter [1 ]
Key, Jennifer D. [2 ]
Rodrigues, Bernardo G. [2 ]
机构
[1] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-4041 Durban, South Africa
关键词
codes; graphs; edge-connectivity; RESTRICTED EDGE-CONNECTIVITY; SUFFICIENT CONDITIONS; BIPARTITE GRAPHS; SUPER; DIGRAPHS; DIAMETER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue our earlier investigation of properties of linear codes generated by the rows of incidence matrices of k-regular connected graphs on n vertices. The notion of edge connectivity is used to show that, for a wide range of such graphs, the p-ary code, for all primes p, from an n x 1/2nk incidence matrix has dimension n or n - 1, minimum weight k, the minimum words are the scalar multiples of the rows, there is a gap in the weight enumerator between k and 2k - 2, and the words of weight 2k - 2 are the scalar multiples of the differences of intersecting rows of the matrix. For such graphs, the graph can thus be retrieved from the code.
引用
收藏
页数:22
相关论文
共 32 条
  • [1] Assmus Jr E. F., 1992, CAMBRIDGE TRACTS MAT, V103
  • [2] Balbuena C, 1999, DISCRETE MATH, V197, P61
  • [3] Diameter-sufficient conditions for a graph to be super-restricted connected
    Balbuena, Camino
    Lin, Yuqing
    Miller, Mirka
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 2827 - 2834
  • [4] Bauer C.S.D., 1981, THEORY APPL GRAPHS, P45
  • [5] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [6] Bosma W., 2006, HDB MAGMA FUNCTIONS, P3951
  • [7] Eigenvalues and perfect matchings
    Brouwer, AE
    Haemers, WH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 : 155 - 162
  • [8] Codes from incidence matrices of graphs
    Dankelmann, P.
    Key, J. D.
    Rodrigues, B. G.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 68 (1-3) : 373 - 393
  • [9] ERDOS P, 1989, J COMB THEORY B, V47, P73
  • [10] Bipartite graphs and digraphs with maximum connectivity
    Fabrega, J
    Fiol, MA
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 69 (03) : 271 - 279