Advances and issues in developing salt-concentrated battery electrolytes

被引:1429
作者
Yamada, Yuki [1 ,2 ]
Wang, Jianhui [1 ,3 ]
Ko, Seongjae [1 ]
Watanabe, Eriko [1 ]
Yamada, Atsuo [1 ,2 ]
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Tokyo, Japan
[2] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, Kyoto, Japan
[3] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
基金
日本学术振兴会;
关键词
LITHIUM-ION BATTERIES; LI-ION; SUPERCONCENTRATED ELECTROLYTES; TRANSPORT MECHANISM; ELECTROCHEMICAL STABILITY; THEORETICAL-ANALYSIS; LIQUID ELECTROLYTES; SOLVATION STRUCTURE; CARBON ELECTRODES; METAL BATTERIES;
D O I
10.1038/s41560-019-0336-z
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With a worldwide trend towards the efficient use of renewable energies and the rapid expansion of the electric vehicle market, the importance of rechargeable battery technologies, particularly lithium-ion batteries, has steadily increased. In the past few years, a major breakthrough in electrolyte materials was achieved by simply increasing the salt concentration in suitable salt-solvent combinations, offering technical superiority in numerous figures of merit over alternative materials. This long-awaited, extremely simple yet effective strategy can overcome most of the remaining hurdles limiting the present lithium-ion batteries without sacrificing manufacturing efficiency, and hence its impact is now widely felt in the scientific community, with serious potential for industrial development. This Review aims to provide timely and objective information that will be valuable for designing better realistic batteries, including a multi-angle analysis of their advantages and disadvantages together with future perspectives. Emphasis is placed on the pathways to address the remaining technical and scientific issues rather than re-highlighting the many technical advantages.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 108 条
[1]   Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes [J].
Aihara, Y ;
Sugimoto, K ;
Price, WS ;
Hayamizu, K .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (05) :1981-1991
[2]   A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Zhang, Minghao ;
Borodin, Oleg ;
Gobrogge, Eric ;
Olguin, Marco ;
Ding, Michael S. ;
Gobet, Mallory ;
Greenbaum, Steve ;
Meng, Ying Shirley ;
Xu, Kang .
MATERIALS TODAY, 2018, 21 (04) :341-353
[3]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727
[4]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[5]   Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes [J].
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6293-6299
[6]   Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure Published as part of the Accounts of Chemical Research special issue "Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales" [J].
Borodin, Oleg ;
Ren, Xiaoming ;
Vatamanu, Jenel ;
Cresce, Arthur von Wald ;
Knap, Jaroslaw ;
Xu, Kang .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (12) :2886-2894
[7]   Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes [J].
Borodin, Oleg ;
Suo, Liumin ;
Gobet, Mallory ;
Ren, Xiaoming ;
Wang, Fei ;
Faraone, Antonio ;
Peng, Jing ;
Olguin, Marco ;
Schroeder, Marshall ;
Ding, Michael S. ;
Gobrogge, Eric ;
Cresce, Arthur von Wald ;
Munoz, Stephen ;
Dura, Joseph A. ;
Greenbaum, Steve ;
Wang, Chunsheng ;
Xu, Kang .
ACS NANO, 2017, 11 (10) :10462-10471
[8]   Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts [J].
Chen, Fangfang ;
Forsyth, Maria .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (28) :19336-19344
[9]   High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Yu, Lu ;
Ren, Xiaodi ;
Engelhard, Mark H. ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Xu, Wu ;
Xiao, Jie ;
Liu, Jun ;
Zhang, Ji-Guang .
JOULE, 2018, 2 (08) :1548-1558
[10]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)