Strain localization and dynamic recrystallization in polycrystalline metals: Thermodynamic theory and simulation framework

被引:56
作者
Lieou, Charles K. C. [1 ]
Mourad, Hashem M. [1 ]
Bronkhorst, Curt A. [1 ,2 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
关键词
Constitutive behavior; Dynamic recrystallization; Shear banding; Steel; Finite-element simulation; Taylor-Quinney coefficient; TAYLOR-QUINNEY COEFFICIENT; MICROSTRUCTURE EVOLUTION; STORED ENERGY; PLASTIC-DEFORMATION; SHEAR LOCALIZATION; STAINLESS-STEEL; FIELD MODEL; COLD WORK; TEMPERATURE; HEAT;
D O I
10.1016/j.ijplas.2019.03.005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We describe a theoretical and computational framework for adiabatic shear banding (ASB) and dynamic recrystallization (DRX) in polycrystalline materials. The Langer-Bouchbinder-Lookman (LBL) thermodynamic theory of polycrystalline plasticity, which we recently reformulated to describe DRX via the inclusion of the grain boundary density or the grain size as an intemal state variable, provides a convenient and self-consistent way to represent the viscoplastic and thermal behavior of the material, with minimal ad-hoc assumptions regarding the initiation of yielding or onset of shear banding. We implement the LBL-DRX theory in conjunction with a finite-element computational framework. Favorable comparison to experimental measurements on a top-hat AISI 316L stainless steel sample compressed with a split-Hopkinson pressure bar suggests the accuracy and usefulness of the LBL-DRX framework, and demonstrates the crucial role of DRX in strain localization.
引用
收藏
页码:171 / 187
页数:17
相关论文
共 72 条
[1]   Adiabatic shear band Localizations in BCC metals at high strain rates and various initial temperatures [J].
Abed, Farid H. ;
Voyiadjis, George Z. .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2007, 5 (3-4) :325-349
[2]   Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals [J].
Abed, FH ;
Voyiadjis, GZ .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (08) :1618-1639
[3]   Nonlocal modeling in high-velocity impact failure of 6061-T6 aluminum [J].
Ahad, F. R. ;
Enakoutsa, K. ;
Solanki, K. N. ;
Bammann, D. J. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2014, 55 :108-132
[4]   The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales [J].
Anand, Lallit ;
Gurtin, Morton E. ;
Reddy, B. Daya .
INTERNATIONAL JOURNAL OF PLASTICITY, 2015, 64 :1-25
[5]   A large-deformation gradient theory for elastic-plastic materials: Strain softening and regularization of shear bands [J].
Anand, Lallit ;
Aslan, Ozgur ;
Chester, Shawn A. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2012, 30-31 :116-143
[6]   Combined stability analysis of phase-field dynamic fracture and shear band localization [J].
Arriaga, Miguel ;
Waisman, Haim .
INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 96 :81-119
[7]   The stored energy of cold work:: Predictions from discrete dislocation plasticity [J].
Benzerga, AA ;
Bréchet, Y ;
Needleman, A ;
Van der Giessen, E .
ACTA MATERIALIA, 2005, 53 (18) :4765-4779
[8]   Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory [J].
Bouchbinder, Eran ;
Langer, J. S. .
PHYSICAL REVIEW E, 2009, 80 (03)
[9]   An experimental and numerical study of the localization behavior of tantalum and stainless steel [J].
Bronkhorst, CA ;
Cerreta, EK ;
Xue, Q ;
Maudlin, PJ ;
Mason, TA ;
Gray, GT .
INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (07) :1304-1335
[10]   Validation of a model for static and dynamic recrystallization in metals [J].
Brown, Arthur A. ;
Bammann, Douglas J. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2012, 32-33 :17-35