NUMERICAL SIMULATION OF AC ELECTROTHERMAL MICROFLUIDIC PUMPING

被引:0
作者
Du, E. [1 ]
Manoochehri, Souran P. [1 ]
机构
[1] Stevens Inst Technol, Dept Mech Engn, Design & Mfg Inst, Hoboken, NJ 07030 USA
来源
MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS | 2008年
关键词
D O I
10.1115/MicroNano2008-70066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
AC electrokinetic forces, such as AC electroosmosis (AC EO), AC electrothermal (AC ET) and dielectrophoresis (DEP) have been intensively investigated in manipulation of microfluids and micro/nanoparticles. AC EO effects are prone to manipulate relatively dilute electrolytes while AC ET effects extend the manipulation into conductive fluid domain. In the case of pumping high conductivity fluid, electric traveling wave signals on interdigitated electrode arrays and single-phase AC signals on asymmetric electrode structures are the two reported methods for AC ET based fluidic manipulation. This paper presents numerical simulation of the AC electric field induced electrothermal fluidic motion and pumping capacity of high conductivity fluids with stepped asymmetric electrode arrays. We investigated the effects of electrode profile and layout on pumping action and temperature rise distribution. Forward pumping mode and backward pumping mode are identified theoretically and numerically. Compared with the planar asymmetric electrode arrays, utilization of steps on electrode profile can result in significant improvement on the pumping capacity.
引用
收藏
页码:487 / 493
页数:7
相关论文
共 50 条
[31]   Biofluid pumping and mixing by an AC electrothermal micropump embedded with a spiral microelectrode pair in a cylindrical microchannel [J].
Gao, Xiaobo ;
Li, Yuxiao .
ELECTROPHORESIS, 2018, 39 (24) :3156-3170
[32]   AC simulation of a thermal flow sensor in a microfluidic channel [J].
Reyes-Romero, Diego F. ;
Cubukcu, Ali S. ;
Urban, Gerald A. .
26TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS, EUROSENSOR 2012, 2012, 47 :1394-1397
[33]   Numerical Simulation of Dielectrophoresis Induced Electrothermal Fluid Flow [J].
Liu, D. L. ;
Chen, L. G. ;
Sun, L. N. .
MEMS/NEMS NANO TECHNOLOGY, 2011, 483 :270-275
[34]   Numerical Simulation of Electromagnetic Actuator for Impedance Pumping [J].
Lee, Chia-Yen ;
Tai, Chang-Hsien ;
Chang, Chin-Lung ;
Tsai, Chien-Hsiung ;
Wang, Yao-Nan ;
Fu, Lung-Ming .
MEMS/NEMS NANO TECHNOLOGY, 2011, 483 :305-+
[35]   NUMERICAL SIMULATION OF OPTIMIZED FOREBAY OF PUMPING STATION [J].
Cheng, Li ;
Zhou, Jiren .
PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A-C, 2009, :2149-2152
[36]   Numerical simulation of a dummy well pumping module [J].
da Silva, Luiz Carlos Tosta ;
Medronho, Ricardo de Andrade .
Boletim Tecnico da PETROBRAS, 2011, 54 (1-2) :55-68
[37]   Numerical simulation of nanocrystal synthesis in a microfluidic reactor [J].
Kumar, Satish ;
Ganesan, Sashikumaar .
COMPUTERS & CHEMICAL ENGINEERING, 2017, 96 :128-138
[38]   Numerical simulation of electrokinetic focusing in microfluidic chips [J].
Lin, JY ;
Fu, LM ;
Yang, RJ .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2002, 12 (06) :955-961
[39]   Numerical simulation of performance of microfluidic inertial impactor [J].
Zhang W. ;
Niu F.-L. ;
Guo Z.-P. ;
Qi H.-B. ;
Wang S.-J. .
Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2017, 51 (12) :2113-2117
[40]   Simulation of microfluidic pumping in a genomic DNA blood-processing cassette [J].
Taylor, MT ;
Nguyen, P ;
Ching, J ;
Petersen, KE .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2003, 13 (02) :201-208