NUMERICAL SIMULATION OF AC ELECTROTHERMAL MICROFLUIDIC PUMPING

被引:0
作者
Du, E. [1 ]
Manoochehri, Souran P. [1 ]
机构
[1] Stevens Inst Technol, Dept Mech Engn, Design & Mfg Inst, Hoboken, NJ 07030 USA
来源
MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS | 2008年
关键词
D O I
10.1115/MicroNano2008-70066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
AC electrokinetic forces, such as AC electroosmosis (AC EO), AC electrothermal (AC ET) and dielectrophoresis (DEP) have been intensively investigated in manipulation of microfluids and micro/nanoparticles. AC EO effects are prone to manipulate relatively dilute electrolytes while AC ET effects extend the manipulation into conductive fluid domain. In the case of pumping high conductivity fluid, electric traveling wave signals on interdigitated electrode arrays and single-phase AC signals on asymmetric electrode structures are the two reported methods for AC ET based fluidic manipulation. This paper presents numerical simulation of the AC electric field induced electrothermal fluidic motion and pumping capacity of high conductivity fluids with stepped asymmetric electrode arrays. We investigated the effects of electrode profile and layout on pumping action and temperature rise distribution. Forward pumping mode and backward pumping mode are identified theoretically and numerically. Compared with the planar asymmetric electrode arrays, utilization of steps on electrode profile can result in significant improvement on the pumping capacity.
引用
收藏
页码:487 / 493
页数:7
相关论文
共 50 条
[21]   Numerical analysis of mixing by electrothermal induced flow in microfluidic systems [J].
Feng, J. J. ;
Krishnamoorthy, S. ;
Sundaram, S. .
BIOMICROFLUIDICS, 2007, 1 (02)
[22]   Simulation of Slip the Velocity Effect in an AC Electrothermal Micropump [J].
Echouchene, Fraj ;
Al-shahrani, Thamraa ;
Belmabrouk, Hafedh .
MICROMACHINES, 2020, 11 (09)
[23]   Numerical investigation of a biomimetic elastic valve for microfluidic pumping [J].
Dryden, Alec ;
Ballard, Matthew .
JOURNAL OF FLUIDS AND STRUCTURES, 2021, 103
[24]   Numerical study on AC electroosmosis in microfluidic channels [J].
Cervenka, Petr ;
Pribyl, Michal ;
Snita, Dalimil .
MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) :1333-1336
[25]   Numerical Simulation of Microfluidic Devices [J].
Hashim, Uda ;
Diyana, P. N. A. ;
Adam, Tijjani .
2012 10TH IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE), 2012, :26-29
[26]   Numerical Simulation of Microfluidic Separators [J].
Ariffin, Shahrul A. B. ;
Hashim, U. ;
Adam, Tijjani .
2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MATERIALS (ICOSM 2013), 2013, 795 :459-463
[27]   Simultaneous Pumping and Mixing of Biological Fluids in a Double-Array Electrothermal Microfluidic Device [J].
Salari, Alinaghi ;
Dalton, Colin .
MICROMACHINES, 2019, 10 (02)
[28]   Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array [J].
Zhang, Rumi ;
Dalton, Colin ;
Jullien, Graham A. .
MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (03) :521-529
[29]   Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array [J].
Rumi Zhang ;
Colin Dalton ;
Graham A. Jullien .
Microfluidics and Nanofluidics, 2011, 10 :521-529
[30]   Numerical Study of the Electrothermal Effect on the Kinetic Reaction of Immunoassays for a Microfluidic Biosensor [J].
Selmi, Marwa ;
Gazzah, Mohamed Hichem ;
Belmabrouk, Hafedh .
LANGMUIR, 2016, 32 (50) :13305-13312