Minimal Steiner trees in X architecture with obstacles

被引:0
|
作者
Luo, CC [1 ]
Hwang, YS [1 ]
Jan, GE [1 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Comp Sci, Chilung 202, Taiwan
来源
CDES '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON COMPUTER DESIGN | 2005年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Steiner minimal tree problem in X architecture is the problem of connecting a set terminals Z using orthogonal, diagonal, and vertical edges with minimum length. This problem has many applications, especially for the routing of VLSI circuits. This paper proposes an obstacle-avoiding heuristic for this problem based on the Areibi's concepts and Prim's minimal spanning tree algorithm, and the Steiner ratio of this approach is 1.25. The space and time complexities are O(N-2) and O(N-2 + p(3)N) respectively, where N and p are the numbers of free and terminal vertices (p <= N).
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [41] k-Steiner-minimal-trees in metric spaces
    Cieslik, D.
    Discrete Mathematics, 1999, 208-209 : 119 - 124
  • [42] STEINER MINIMAL-TREES FOR A CLASS OF ZIGZAG LINES
    BOOTH, RS
    WENG, JF
    ALGORITHMICA, 1992, 7 (2-3) : 231 - 246
  • [43] HEXAGONAL COORDINATE SYSTEMS AND STEINER MINIMAL-TREES
    HWANG, FK
    WENG, JF
    DISCRETE MATHEMATICS, 1986, 62 (01) : 49 - 57
  • [44] STEINER MINIMAL-TREES ON REGULAR POLYGONS WITH CENTER
    WENG, JF
    BOOTH, RS
    DISCRETE MATHEMATICS, 1995, 141 (1-3) : 259 - 274
  • [45] EXACT COMPUTATION OF STEINER MINIMAL-TREES IN THE PLANE
    COCKAYNE, EJ
    HEWGILL, DE
    INFORMATION PROCESSING LETTERS, 1986, 22 (03) : 151 - 156
  • [46] Using a Conic Formulation for Finding Steiner Minimal Trees
    Marcia Fampa
    Nelson Maculan
    Numerical Algorithms, 2004, 35 : 315 - 330
  • [47] IDENTIFYING STEINER MINIMAL TREES ON FOUR POINTS IN SPACE
    Weng, J. F.
    Thomas, D. A.
    Mareels, I.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (03) : 401 - 411
  • [48] k-Steiner-minimal-trees in metric spaces
    Cieslik, D
    DISCRETE MATHEMATICS, 1999, 208 : 119 - 124
  • [49] A DECOMPOSITION THEOREM ON EUCLIDEAN STEINER MINIMAL-TREES
    HWANG, FK
    SONG, GD
    TING, GY
    DU, DZ
    DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (04) : 367 - 382
  • [50] STEINER MINIMAL-TREES AND URBAN SERVICE NETWORKS
    SMITH, JM
    GROSS, M
    SOCIO-ECONOMIC PLANNING SCIENCES, 1982, 16 (01) : 21 - 38