An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial Schrodinger equation

被引:32
作者
Van de Vyver, H [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
关键词
embedded explicit Runge-Kutta methods; variable stepsize algorithms; phase-fitting; resonance problem; phase-shift problem;
D O I
10.1016/j.physleta.2005.12.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new way for constructing efficient embedded modified Runge-Kutta methods for the numerical solution of the Schrodinger equation is presented in this Letter. The methods of the embedded scheme have algebraic orders five and four. Applications of the new pair to several problems arising from the radial Schrodinger equation indicate that the new pair is more efficient than other well known comparable embedded Runge-Kutta pairs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 17 条
[2]  
Blatt J M, 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[4]  
Dormand J., 1980, J. Comput. Appl. Math., V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
[5]   An embedded pair of exponentially fitted explicit Runge-Kutta methods [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (02) :407-414
[6]  
Hairer Ernst, 1993, Springer Ser. Comput. Math., V8
[7]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[8]   EXPONENTIAL-FITTING METHODS FOR NUMERICAL-SOLUTION OF SCHRODINGER EQUATION [J].
RAPTIS, A ;
ALLISON, AC .
COMPUTER PHYSICS COMMUNICATIONS, 1978, 14 (1-2) :1-5
[9]   A 4-STEP PHASE-FITTED METHOD FOR THE NUMERICAL-INTEGRATION OF 2ND-ORDER INITIAL-VALUE PROBLEMS [J].
RAPTIS, AD ;
SIMOS, TE .
BIT, 1991, 31 (01) :160-168
[10]   A VARIABLE STEP METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
RAPTIS, AD ;
CASH, JR .
COMPUTER PHYSICS COMMUNICATIONS, 1985, 36 (02) :113-119