An efficient symmetric finite volume element method for second-order variable coefficient parabolic integro-differential equations

被引:2
|
作者
Gan, Xiaoting [1 ,2 ]
Xu, Dengguo [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Chuxiong Normal Univ, Sch Math & Stat, Chuxiong 675000, Peoples R China
[3] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic integro-differential equations; Barycenter dual mesh; Symmetric FVE schemes; L-2-norm error estimates; DIFFUSION; APPROXIMATIONS; SCHEME; VALUATION; ACCURACY; OPTIONS; ASSETS;
D O I
10.1007/s40314-020-01318-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to develop a symmetric finite volume element (FVE) method to solve second-order variable coefficient parabolic integro-differential equations, arising in modeling of nonlocal reactive flows in porous media. Based on barycenter dual mesh, one semi-discrete and two fully discrete backward Euler and Crank-Nicolson symmetric FVE schemes are presented. Then, the optimal order error estimates in L-2-norm are derived for the semi-discrete and two fully discrete schemes. Numerical experiments are performed to examine the convergence rate and verify the effectiveness and usefulness of the new numerical schemes.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Hou, Tianliang
    Liu, Chunmei
    Dai, Chunlei
    Chen, Luoping
    Yang, Yin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (05): : 671 - 689
  • [32] Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data
    Goswami, Deepjyoti
    Pani, Amiya K.
    Yadav, Sangita
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) : 131 - 164
  • [33] Finite-volume-element method for second-order quasilinear elliptic problems
    Bi, Chunjia
    Ginting, Victor
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 1062 - 1089
  • [34] Approximate Method For Solving Linear Integro-Differential Equations of Order One
    Eshkuvatov, Z. K.
    Kammuji, M.
    Yunus, Arif A. M.
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [35] Weak Galerkin finite-element method for time-fractional nonlinear integro-differential equations
    Wang, Haifeng
    Xu, Da
    Guo, Jing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
  • [36] A posteriori error estimate for finite volume element method of the parabolic equations
    Chen, Chuanjun
    Zhao, Xin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 259 - 275
  • [37] Two-grid methods for expanded mixed finite element approximations of semi-linear parabolic integro-differential equations
    Hou, Tianliang
    Chen, Luoping
    Yang, Yin
    APPLIED NUMERICAL MATHEMATICS, 2018, 132 : 163 - 181
  • [38] AN hp-VERSION DISCONTINUOUS GALERKIN METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE
    Mustapha, K.
    Brunner, H.
    Mustapha, H.
    Schoetzau, D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1369 - 1396
  • [39] On a numerical method for solving integro-differential equations with variable coefficients with applications in finance
    Kudryavtsev, O.
    Rodochenko, V.
    INTERNATIONAL CONFERENCE APPLIED MATHEMATICS, COMPUTATIONAL SCIENCE AND MECHANICS: CURRENT PROBLEMS, 2018, 973
  • [40] C3-spline for solution of second order fractional integro-differential equations
    Mohammadizadeh, S.
    Rashidinia, J.
    Ezzati, R.
    Khumalo, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3635 - 3641