Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake

被引:1115
作者
Zhang, Y [1 ]
Kohler, N [1 ]
Zhang, MQ [1 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
magnetite nanoparticles; PEG; folic acid; particle internalization;
D O I
10.1016/S0142-9612(01)00267-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Superparamagnetic magnetite nanoparticles were surface-modified with poly (ethylene glycol) (PEG) and folic acid, respectively, to improve their intracellular uptake and ability to tat-get specific cells. PEG and folic acid were successfully immobilized on the surfaces of magnetite nanoparticles and characterized using fourier transform infrared spectra. The nanoparticle internalization into mouse macrophage (RAW 264.7) and human breast cancer (BT20) cells was visualized using both fluorescence and confocal microscopy, and quantified by inductively coupled plasma emission spectroscopy (ICP). After the cells were cultured for 48 h in the medium containing the nanoparticles modified with PEG or folic acid, the results of fluorescence and confocal microscopy showed that the nanoparticles were internalized into the cells. The ICP measurements indicated that the uptake amount of PEG-modified nanoparticles into macrophage cells was much lower than that of unmodified nanoparticles, while folic acid modification did not change the amount of the uptake. However, for breast cancer cells, both PEG and folic acid modification facilitated the nanoparticle internalization into the cells. Therefore, PEG and folic acid modification of magnetite nanoparticles could be used to resist the protein adsorption and thus avoid the particle recognition by macropliage cells, and to facilitate the nanoparticle uptake to specific cancer cells for cancer therapy and diagnosis. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1553 / 1561
页数:9
相关论文
共 36 条
[11]  
Gruttner C, 1997, SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS, P53
[12]   MAGNETICALLY CONTROLLED TARGETED MICRO-CARRIER SYSTEMS [J].
GUPTA, PK ;
HUNG, CT .
LIFE SCIENCES, 1989, 44 (03) :175-186
[13]   In vitro and in vivo toxicity of magnetic microspheres [J].
Häfeli, UO ;
Pauer, GJ .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 194 (1-3) :76-82
[14]  
Jordan A, 1997, SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS, P569
[15]  
Jungfer Karl-Heinz, 1995, Alytes (Paris), V13, P1
[16]   Functional separation of pseudopod extension and particle internalization during Fcγ receptor-mediated phagocytosis [J].
Lowry, MB ;
Duchemin, AM ;
Robinson, JM ;
Anderson, CL .
JOURNAL OF EXPERIMENTAL MEDICINE, 1998, 187 (02) :161-176
[17]  
Lubbe AS, 1996, CANCER RES, V56, P4694
[18]   Measuring transferrin receptor gene expression by NMR imaging [J].
Moore, A ;
Basilion, JP ;
Chiocca, EA ;
Weissleder, R .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1998, 1402 (03) :239-249
[19]  
OKON E, 1994, LAB INVEST, V71, P895
[20]   Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers [J].
Patel, N ;
Davies, MC ;
Hartshorne, M ;
Heaton, RJ ;
Roberts, CJ ;
Tendler, SJB ;
Williams, PM .
LANGMUIR, 1997, 13 (24) :6485-6490