Bivariate hierarchical Hermite spline quasi-interpolation

被引:9
作者
Bracco, Cesare [1 ]
Giannelli, Carlotta [1 ]
Mazzia, Francesca [2 ]
Sestini, Alessandra [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Bari, Dipartimento Matemat, Via Orabona 4, I-70125 Bari, Italy
关键词
B-splines; Hermite quasi-interpolation; Hierarchical spaces; Truncated hierarchical B-splines; POLYNOMIAL SPLINES; BASES;
D O I
10.1007/s10543-016-0603-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Spline quasi-interpolation (QI) is a general and powerful approach for the construction of low cost and accurate approximations of a given function. In order to provide an efficient adaptive approximation scheme in the bivariate setting, we consider quasi-interpolation in hierarchical spline spaces. In particular, we study and experiment the features of the hierarchical extension of the tensor-product formulation of the Hermite BS quasi-interpolation scheme. The convergence properties of this hierarchical operator, suitably defined in terms of truncated hierarchical B-spline bases, are analyzed. A selection of numerical examples is presented to compare the performances of the hierarchical and tensor-product versions of the scheme.
引用
收藏
页码:1165 / 1188
页数:24
相关论文
共 22 条
[1]   Bases of T-meshes and the refinement of hierarchical B-splines [J].
Berdinsky, Dmitry ;
Kim, Tae-wan ;
Cho, Durkbin ;
Bracco, Cesare ;
Kiatpanichgij, Sutipong .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 :841-855
[2]   Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence [J].
Buffa, Annalisa ;
Giannelli, Carlotta .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (01) :1-25
[3]   Error bounds on the approximation of functions and partial derivatives by quadratic spline quasi-interpolants on non-uniform criss-cross triangulations of a rectangular domain [J].
Dagnino, Catterina ;
Remogna, Sara ;
Sablonniere, Paul .
BIT NUMERICAL MATHEMATICS, 2013, 53 (01) :87-109
[4]  
De Boor C., 1973, Journal of Approximation Theory, V8, P19, DOI 10.1016/0021-9045(73)90029-4
[5]   Polynomial splines over locally refined box-partitions [J].
Dokken, Tor ;
Lyche, Tom ;
Pettersen, Kjell Fredrik .
COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (03) :331-356
[6]   Strongly stable bases for adaptively refined multilevel spline spaces [J].
Giannelli, Carlotta ;
Juettler, Bert ;
Speleers, Hendrik .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) :459-490
[7]   Bases and dimensions of bivariate hierarchical tensor-product splines [J].
Giannelli, Carlotta ;
Juettler, Bert .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 :162-178
[8]   THB-splines: The truncated basis for hierarchical splines [J].
Giannelli, Carlotta ;
Juettler, Bert ;
Speleers, Hendrik .
COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (07) :485-498
[9]  
Iurino A., 2014, THESIS
[10]  
Iurino A., 2013, 112013 U DEG STUD BA