Statistical Inference for a kind of Nonlinear Regression Model

被引:0
|
作者
Jiang, Yuying [1 ]
Zhang, Yongming [1 ]
机构
[1] Beijing Inst Graph Commun, Dept Basic Sci, Beijing, Peoples R China
来源
SUSTAINABLE DEVELOPMENT OF NATURAL RESOURCES, PTS 1-3 | 2013年 / 616-618卷
关键词
Statistical Inference; Nonlinear Regression Model; Lagrange Multiplier; Asymptotic Confidence Region;
D O I
10.4028/www.scientific.net/AMR.616-618.2149
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As we all know, statistical inference of linear models has been a hot topic of statistical and econometric research. However, in many practical problems, the variable of interest and covariates are often nonlinear relationship. The performance of the statistical inference using linear models model can be very poor. In this paper, the statistical inference of a nonlinear regression model under some additional restricted conditions is investigated. The restricted estimator for the unknown parameter is proposed. Under some mild conditions, the asymptotic normality of the proposed estimator is established on the basis of Lagrange multiplier and hence can be used to construct the asymptotic confidence region of the regression parameter.
引用
收藏
页码:2149 / 2152
页数:4
相关论文
共 50 条
  • [1] Statistical inference in nonlinear regression under heteroscedasticity
    Changwon Lim
    Pranab K. Sen
    Shyamal D. Peddada
    Sankhya B, 2010, 72 (2) : 202 - 218
  • [2] Statistical inference in nonlinear regression under heteroscedasticity
    Lim, Changwon
    Sen, Pranab K.
    Peddada, Shyamal D.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2010, 72 (02): : 202 - 218
  • [3] STATISTICAL INFERENCE FOR A BIVARIATE POISSON REGRESSION MODEL
    Riggs, Kent
    Young, Dean M.
    Stamey, James D.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2008, 10 (01) : 55 - 73
  • [4] Statistical inference on uncertain nonparametric regression model
    Jianhua Ding
    Zhiqiang Zhang
    Fuzzy Optimization and Decision Making, 2021, 20 : 451 - 469
  • [5] Statistical inference on uncertain nonparametric regression model
    Ding, Jianhua
    Zhang, Zhiqiang
    FUZZY OPTIMIZATION AND DECISION MAKING, 2021, 20 (04) : 451 - 469
  • [6] Statistical physical view of statistical inference in Bayesian linear regression model
    Murayama, Kazuaki
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [7] Statistical inference for the functional quadratic quantile regression model
    Shi, Gongming
    Xie, Tianfa
    Zhang, Zhongzhan
    METRIKA, 2020, 83 (08) : 937 - 960
  • [8] Statistical inference for the functional quadratic quantile regression model
    Gongming Shi
    Tianfa Xie
    Zhongzhan Zhang
    Metrika, 2020, 83 : 937 - 960
  • [9] Statistical inference for a heteroscedastic regression model with φ-mixing errors
    Ding, Liwang
    Chen, Ping
    Yongming, Li
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (08) : 4658 - 4676
  • [10] Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach
    Demidenko, Eugene
    SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (03) : 636 - 665