NETWORK COMMUNITY DETECTION BASED ON SPECTRAL CLUSTERING

被引:0
作者
Qiu, Jing [1 ]
Peng, Jing [1 ]
Zhai, Ying [2 ]
机构
[1] Hebei Univ Sci & Technol, Dept Informat Sci & Engn, Shijiazhuang 050018, Peoples R China
[2] Hebei Univ Econ & Business, Dept Informat & Technol, Shijiazhuang 050061, Peoples R China
来源
PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2 | 2014年
基金
中国国家自然科学基金;
关键词
Laplacian matrix; Spectral vlustering; K-means; Community detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, spectral clustering based on the spectral graph theory has become one of the most popular clustering algorithms. It is easy to implement and is widely used in the domain of pattern recognition. In this paper, a new method is proposed to estimate the number of communities based on spectral clustering. The conductivity function and the accuracy are used to evaluate the quality of community detection. Experimental results on Zachary Karate Club show that the proposed method yields a high accuracy and effectiveness.
引用
收藏
页码:648 / 652
页数:5
相关论文
共 9 条
  • [1] Resolution limit in community detection
    Fortunato, Santo
    Barthelemy, Marc
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (01) : 36 - 41
  • [2] Community detection in graphs
    Fortunato, Santo
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 486 (3-5): : 75 - 174
  • [3] Community structure in social and biological networks
    Girvan, M
    Newman, MEJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) : 7821 - 7826
  • [4] Gregory S, 2008, LECT NOTES ARTIF INT, V5211, P408, DOI 10.1007/978-3-540-87479-9_45
  • [5] Finding and evaluating community structure in networks
    Newman, MEJ
    Girvan, M
    [J]. PHYSICAL REVIEW E, 2004, 69 (02) : 026113 - 1
  • [6] Papadimitriou S, 2008, LECT NOTES ARTIF INT, V5212, P170, DOI 10.1007/978-3-540-87481-2_12
  • [7] Yang J., 2012, P ACM SIGKDD WORKSHO, P1, DOI [DOI 10.1007/S10115-013-0693-Z, DOI 10.1145/2350190.2350193]
  • [8] Yang TB, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P927
  • [9] Zhang YZ, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P997