Likelihood inference for correlated binary data without any information about the joint distributions

被引:0
作者
Tsou, Tsung-Shan [1 ]
Hsiao, Wei-Cheng [2 ]
机构
[1] Natl Cent Univ, Ctr Biotechnol & Biomed Engn, Inst Syst Biol & Bioinformat, Inst Stat, Jhongli, Taiwan
[2] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
关键词
Correlated binary data; Binomial model; Logistic regression; Robust likelihood; Model misspecification; REPRODUCTION; MODELS;
D O I
10.1080/03610926.2015.1033553
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a universal robust likelihood that is able to accommodate correlated binary data without any information about the underlying joint distributions. This likelihood function is asymptotically valid for the regression parameter for any underlying correlation configurations, including varying under-or over-dispersion situations, which undermines one of the regularity conditions ensuring the validity of crucial large sample theories. This robust likelihood procedure can be easily implemented by using any statistical software that provides naive and sandwich covariance matrices for regression parameter estimates. Simulations and real data analyses are used to demonstrate the efficacy of this parametric robust method.
引用
收藏
页码:2151 / 2160
页数:10
相关论文
共 21 条