Crystal Structure of tRNA N2, N2-Guanosine Dimethyltransferase Trm1 from Pyrococcus horikoshii

被引:29
作者
Ihsanawati [1 ]
Nishimoto, Madoka [1 ]
Higashijima, Kyoko [1 ]
Shirouzu, Mikako [1 ]
Grosjean, Henri [2 ]
Bessho, Yoshitaka [1 ,3 ]
Yokoyama, Shigeyuki [1 ,3 ,4 ]
机构
[1] RIKEN, Yokohama Inst, Syst & Struct Biol Ctr, Yokohama, Kanagawa 2300045, Japan
[2] Univ Paris 11, Inst Genet & Microbiol, F-91405 Orsay, France
[3] RIKEN, Harima Inst, SPring Ctr 8, Sayo, Hyogo 6795148, Japan
[4] Univ Tokyo, Grad Sch Sci, Dept Biophys & Biochem, Bunkyo Ku, Tokyo 1130033, Japan
关键词
Trm1; tRNA-m(2)(2)G26; AdoMet; dimethyltransferase; P; horikoshii;
D O I
10.1016/j.jmb.2008.08.068
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-L-methionine or S-adenosyl-L-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-L-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethy-lated tRNA.Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:871 / 884
页数:14
相关论文
共 51 条
  • [1] tRNA's wobble decoding of the genome: 40 years of modification
    Agris, Paul F.
    Vendeix, Franck A. P.
    Graham, William D.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2007, 366 (01) : 1 - 13
  • [2] Crystal structure of tRNA(m1G37)methyltransferase:: insights into tRNA recognition
    Ahn, HJ
    Kim, HW
    Yoon, HJ
    Lee, BI
    Suh, SW
    Yang, JK
    [J]. EMBO JOURNAL, 2003, 22 (11) : 2593 - 2603
  • [3] SCOP database in 2004: refinements integrate structure and sequence family data
    Andreeva, A
    Howorth, D
    Brenner, SE
    Hubbard, TJP
    Chothia, C
    Murzin, AG
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 : D226 - D229
  • [4] AWAI T, 2005, NUCL ACIDS S SER, V49, P303
  • [5] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [6] Electrostatics of nanosystems: Application to microtubules and the ribosome
    Baker, NA
    Sept, D
    Joseph, S
    Holst, MJ
    McCammon, JA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) : 10037 - 10041
  • [7] Bjork G. R., 2005, ESCHERICHIA COLI SAL
  • [8] Measurement errors and their consequences in protein crystallography
    Borek, D
    Minor, W
    Otwinowski, Z
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2003, 59 : 2031 - 2038
  • [9] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [10] Bujnicki JM, 2002, J MOL MICROB BIOTECH, V4, P405