Structural modifications and non-monotonic carrier concentration in Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions

被引:18
作者
Chen, Jikun [1 ]
Zhou, Xiaoyuan [2 ]
Uher, Ctirad [2 ]
Shi, Xun [1 ]
Jun, Jin [1 ]
Dong, Hongliang [1 ]
Li, Yulong [1 ]
Zhou, Yanfei [1 ]
Wen, Zhaoyin [1 ]
Chen, Lidong [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
Thermoelectric; Carrier transportation; Nanostructure; Lithium reaction; Bismuth chalcogenides; THERMOELECTRIC PERFORMANCE; BISMUTH TELLURIDE; FIGURE; INTERCALATION; ENHANCEMENT; NANOTUBES; MERIT;
D O I
10.1016/j.actamat.2012.11.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reversible electrochemical lithium intercalation/deintercalation reactions have been applied to integrally modify the thermoelectric performance of Bi2Se0.3Te2.7 compounds. The carrier concentration of Bi2Se0.3Te2.7 has been precisely controlled experimentally through the adjustment of the residual lithium content. The variations of electronic transport properties of LixBi2Se0.3Te2.7, including electrical conductivity, Seebeck coefficient and carrier concentration, as a function of the intercalated lithium amount (x), show a special non-monotonic P-type to N-type doping trend. This variation is caused by the competition of two mechanisms controlling the carrier concentration: (i) decreasing of the Se/Te ratio through a Li-Se reaction that reduces the amount of the Te-Bi or Se-Bi antisite defects and therefore the electron concentration; (ii) n-type doping by lithium that provides the electron. Moreover, the nanoparticle exfoliation during lithium intercalation and deintercalation reactions leads to the formation of an internal nanocrystalline composite structure which effectively reduces the lattice thermal conductivity. Through an integral modification of both electrical and thermal transport properties, the maximum ZT value of LixBi2Se0.3Te2.7 was improved by nearly 25%. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1508 / 1517
页数:10
相关论文
共 39 条
[1]   Copper intercalation into Bi2Te3 single crystals [J].
Bludská, J ;
Karamazov, S ;
Navrátil, J ;
Jakubec, I ;
Horák, J .
SOLID STATE IONICS, 2004, 171 (3-4) :251-259
[2]   Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation [J].
Chen, Jikun ;
Zhu, Yingjie ;
Chen, Nuofu ;
Liu, Xinling ;
Sun, Zhengliang ;
Huang, Zhenghong ;
Kang, Feiyu ;
Gao, Qiuming ;
Jiang, Jun ;
Chen, Lidong .
JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (12) :6569-6578
[3]   Direct tuning of electrical properties in nano-structured Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions [J].
Chen, Jikun ;
Zhou, Xiaoyuan ;
Snyder, G. Jeffrey ;
Uher, Ctirad ;
Chen, Nuofu ;
Wen, Zhaoyin ;
Jin, Jun ;
Dong, Hongliang ;
Qiu, Pengfei ;
Zhou, Yanfei ;
Shi, Xun ;
Chen, Lidong .
CHEMICAL COMMUNICATIONS, 2011, 47 (44) :12173-12175
[4]   Top-down fabrication of nano-scaled Bi2Se0.3Te2.7 associated by electrochemical Li intercalation [J].
Chen, Jikun ;
Sun, Zhengliang ;
Zhu, Yingjie ;
Chen, Nuofu ;
Zhou, Yanfei ;
Ding, Juan ;
Chen, Xihong ;
Chen, Lidong .
DALTON TRANSACTIONS, 2011, 40 (02) :340-343
[5]  
Ding ZF, 2001, ADV MATER, V13, P797, DOI 10.1002/1521-4095(200106)13:11<797::AID-ADMA797>3.0.CO
[6]  
2-U
[7]   Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride [J].
Ding, Zhongfen ;
Bux, Sabah K. ;
King, Daniel J. ;
Chang, Feng L. ;
Chen, Tai-Hao ;
Huang, Shu-Chuan ;
Kaner, Richard B. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (17) :2588-2592
[8]   Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering [J].
Dong, Guo-Hui ;
Zhu, Ying-Jie ;
Chen, Li-Dong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (10) :1976-1981
[9]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[10]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232