Electrochemiluminescent Quenching of Quantum Dots for Ultrasensitive Immunoassay through Oxygen Reduction Catalyzed by Nitrogen-Doped Graphene-Supported Hemin

被引:113
|
作者
Deng, Shengyuan [1 ]
Lei, Jianping [1 ]
Huang, Yin [1 ]
Cheng, Yan [1 ]
Ju, Huangxian [1 ]
机构
[1] Nanjing Univ, Dept Chem, State Key Lab Analyt Chem Life Sci, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBES; FUNCTIONAL NANOMATERIALS; CANCER; AMPLIFICATION; IMMUNOSENSOR; ARRAYS; OXIDE; NANOPARTICLES; PORPHYRINS; COREACTANT;
D O I
10.1021/ac3036537
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A hemin functionalized graphene sheet was prepared via the noncovalent assembly of hemin on nitrogen-doped graphene. The graphene sheet could act as an oxygen reduction catalyst to produce sensitive electrochemiluminescent (ECL) quenching of quantum dots (QDs) due to the annihilation of dissolved oxygen, the ECL coreactant, by its electrocatalytic reduction. With the use of the catalyst with high loading of hemin as a signal tag of the secondary antibody, a novel ultrasensitive immunoassay method for biomarker detection was proposed. In an air-saturated pH 8.0 buffer, the immunosensor constructed by a stepwise immobilization of bidentate-chelated CdTe QDs and capture antibody showed an intensive cathodic ECL irradiation, which could be scavenged upon the formation of the catalyst-bound sandwich immunocomplex. With the use of the carcinoembryonic antigen as a model analyte, the immunoassay method showed a linear range from 0.1 pg mL(-1) to 10 ng mL(-1) and a detection limit of 24 fg mL(-1). The immunosensor exhibited good stability, acceptable fabrication reproducibility, and practicability. The electrocatalytic reduction-based ECL quenching strategy provided a powerful avenue for the design of the ultrasensitive detection method, showing great promise for clinical application.
引用
收藏
页码:5390 / 5396
页数:7
相关论文
共 50 条
  • [1] Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction
    Li, Pingwei
    Yin, Xuying
    Yan, Ya
    Zhan, Ke
    Yang, Junhe
    Zhao, Bin
    Li, Jianqiang
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (08) : 6124 - 6134
  • [2] Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction
    Pingwei Li
    Xuying Yin
    Ya Yan
    Ke Zhan
    Junhe Yang
    Bin Zhao
    Jianqiang Li
    Journal of Materials Science, 2018, 53 : 6124 - 6134
  • [3] Oxygen Electroreduction Catalyzed by Palladium Nanoparticles Supported on Nitrogen-Doped Graphene Quantum Dots: Impacts of Nitrogen Dopants
    Deming, Christopher P.
    Mercado, Rene
    Lu, Jia En
    Gadiraju, Vamsi
    Khan, Mohammad
    Chen, Shaowei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (12): : 6580 - 6589
  • [4] A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots
    Zhou, Jing
    Han, Tongqian
    Ma, Hongmin
    Yan, Tao
    Pang, Xuehui
    Li, Yueyun
    Wei, Qin
    ANALYTICA CHIMICA ACTA, 2015, 889 : 82 - 89
  • [5] Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots
    Khonsari, Yasamin Nasiri
    Sun, Shiguo
    MICROCHIMICA ACTA, 2018, 185 (09)
  • [6] Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots
    Yasamin Nasiri Khonsari
    Shiguo Sun
    Microchimica Acta, 2018, 185
  • [7] Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction
    Chen, Minghua
    Liu, Jilei
    Zhou, Weijiang
    Lin, Jianyi
    Shen, Zexiang
    SCIENTIFIC REPORTS, 2015, 5
  • [8] Computational study of the oxygen reduction reaction on nitrogen-doped graphene quantum dots
    Noffke, Benjamin W.
    Li, Liang-shi
    Raghavachari, Krishnan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [9] Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots
    Zhang, Peng
    Hu, Qiang
    Yang, Xuejing
    Hou, Xiuli
    Mi, Jianli
    Liu, Lei
    Dong, Mingdong
    RSC ADVANCES, 2018, 8 (01) : 531 - 536
  • [10] Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction
    Minghua Chen
    Jilei Liu
    Weijiang Zhou
    Jianyi Lin
    Zexiang Shen
    Scientific Reports, 5