A DERIVATIVE-FREE APPROACH TO CONSTRAINED MULTIOBJECTIVE NONSMOOTH OPTIMIZATION

被引:39
作者
Liuzzi, G. [1 ]
Lucidi, S. [2 ]
Rinaldi, F. [3 ]
机构
[1] CNR, Ist Anal Sistemi Informat A Ruberti, Via Taurini 19, I-00185 Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Ingn Informat Automat & Gestionale A, Via Ariosto 25, I-00185 Rome, Italy
[3] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
关键词
derivative-free multiobjective optimization; Lipschitz optimization; inequality constraints; exact penalty functions; ALGORITHM;
D O I
10.1137/15M1037810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider multiobjective optimization problems with both bound constraints on the variables and general nonlinear constraints, where objective and constraint function values can only be obtained by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of Pareto stationary points. To this aim, we carry out a theoretical analysis of the problem by only assuming Lipschitz continuity of the functions; more specifically, we give new optimality conditions that take explicitly into account the bound constraints, and prove that the original problem is equivalent to a bound constrained problem obtained by penalizing the nonlinear constraints with an exact merit function. Finally, we present the results of some numerical experiments on bound constrained and nonlinearly constrained problems, showing that our approach is promising when compared to a state-of-the-art method from the literature.
引用
收藏
页码:2744 / 2774
页数:31
相关论文
共 25 条
[1]  
[Anonymous], 1997, Nondifferentiable and Two-Level Mathematical Programming, DOI DOI 10.1007/978-1-4615-6305-1
[2]   Multiobjective optimization through a series of single-objective formulations [J].
Audet, Charles ;
Savard, Gilles ;
Zghal, Walid .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) :188-210
[3]   Multiobjective GAs, quantitative indices, and pattern classification [J].
Bandyopadhyay, S ;
Pal, SK ;
Aruna, B .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (05) :2088-2099
[4]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[5]  
Conn AR, 2009, MOS-SIAM SER OPTIMIZ, V8, P1
[6]   DIRECT MULTISEARCH FOR MULTIOBJECTIVE OPTIMIZATION [J].
Custodio, A. L. ;
Madeira, J. F. A. ;
Vaz, A. I. F. ;
Vicente, L. N. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) :1109-1140
[7]  
CUSTODIO A. L., ERRATA DIRECT MULTIS
[8]  
Custodio A.L., 2012, COMPUTATIONAL TECHNO, V5, P1, DOI [10.4203/ctr.5.1, DOI 10.4203/CTR.5.1]
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213