Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints

被引:6
作者
Jiang, Suhong [1 ]
Zhang, Jin [2 ]
Chen, Caihua [1 ]
Lin, Guihua [3 ]
机构
[1] Nanjing Univ, Sch Management & Engn, Nanjing, Jiangsu, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Peoples R China
[3] Shanghai Univ, Sch Management, Shanghai, Peoples R China
基金
国家教育部科学基金资助;
关键词
MPEC; M-stationarity; S-stationarity; Partial penalty method; Proximal alternating linearized minimization method; OPTIMALITY CONDITIONS; OPTIMIZATION PROBLEMS; EXACT PENALIZATION;
D O I
10.1007/s10898-017-0539-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Mathematical program with equilibrium constraints (MPEC) is an important problem in mathematical programming as it arises frequently in a broad spectrum of fields. In this paper, we propose an implementable smoothing partial exact penalty method to solve MPEC, where the subproblems are solved inexactly by the proximal alternating linearized minimization method. Under the extend MPEC-NNAMCQ, the proposed method is shown to be convergent to an M-stationary point of the MPEC.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1996, MATH PROGRAMS EQUILI, DOI DOI 10.1017/CBO9780511983658
[2]   Proximal alternating linearized minimization for nonconvex and nonsmooth problems [J].
Bolte, Jerome ;
Sabach, Shoham ;
Teboulle, Marc .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :459-494
[3]  
Chen C.H., 2017, SPLITTING METHODS BA
[4]  
Clarke F. H, 1983, CLASSICS APPL MATH
[5]   A smoothing method for mathematical programs with equilibrium constraints [J].
Facchinei, F ;
Jiang, HY ;
Qi, LQ .
MATHEMATICAL PROGRAMMING, 1999, 85 (01) :107-134
[6]   On the Guignard constraint qualification for mathematical programs with equilibrium constraints [J].
Flegel, ML ;
Kanzow, C .
OPTIMIZATION, 2005, 54 (06) :517-534
[7]   Convergence of a penalty method for mathematical programming with complementarity constraints [J].
Hu, XM ;
Ralph, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 123 (02) :365-390
[8]   AN INVITATION TO TAME OPTIMIZATION [J].
Ioffe, A. D. .
SIAM JOURNAL ON OPTIMIZATION, 2009, 19 (04) :1894-1917
[9]   Smooth SQP methods for mathematical programs with nonlinear complementarity constraints [J].
Jiang, HY ;
Ralph, D .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :779-808
[10]   Hybrid approach with active set identification for mathematical programs with complementarity constraints [J].
Lin, GH ;
Fukushima, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 128 (01) :1-28