In situ polarization study of zinc-cerium redox flow batteries

被引:20
作者
Amini, Kiana [1 ]
Pritzker, Mark D. [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cerium; Zinc; Energy storage; Redox flow battery; Polarization; ELECTRODES; PERFORMANCE; CHALLENGES; IMPEDANCE; LOSSES; ACID;
D O I
10.1016/j.jpowsour.2020.228463
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An in situ investigation of the sources of performance loss during discharge of a zinc-cerium redox flow battery (RFB) has been carried out. Polarization and electrochemical impedance spectroscopy (EIS) measurements on a bench-scale zinc-cerium RFB are combined to determine the overpotentials due to kinetic and ohmic effects and provide an estimate of the mass transfer losses. In order to further evaluate the source of these overpotentials, the contribution of each half-cell is evaluated by insertion of Ag/AgCl reference electrodes at each of the two inlets to the battery. Measurements reveal that most of the losses are due to the kinetic overpotential of the Zn/Zn2+ half-cell at low and intermediate current densities. Additionally, in situ kinetic analysis reveals that the exchange current density is (similar to)7.4 x 10(-3) A cm(-2) for Zn/Zn2+ oxidation and (similar to)24.2 x 10(-3) A cm(-2) for Ce4+ reduction. The difference in these values supports the conclusion that the slower kinetics at the negative electrode limits the performance at low and intermediate current densities. The effects of an alternative mixed sulfonate/chloride electrolyte to facilitate the kinetics of the Zn/Zn2+ redox couple and electrolyte flow rate to enhance the mass transfer at the positive electrode are also investigated through in situ polarization experiments.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Polarization curve analysis of all-vanadium redox flow batteries [J].
Aaron, Doug ;
Tang, Zhijiang ;
Papandrew, Alexander B. ;
Zawodzinski, Thomas A. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (10) :1175-1182
[2]   In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries [J].
Aaron, Douglas ;
Sun, Che-Nan ;
Bright, Michael ;
Papandrew, Alexander B. ;
Mench, Matthew M. ;
Zawodzinski, Thomas A. .
ECS ELECTROCHEMISTRY LETTERS, 2013, 2 (03) :A29-A31
[3]   Improvement of zinc-cerium redox flow batteries using mixed methanesulfonate-chloride negative electrolyte [J].
Amini, Kiana ;
Pritzker, Mark D. .
APPLIED ENERGY, 2019, 255
[4]   Electrodeposition and electrodissolution of zinc in mixed methanesulfonate-based electrolytes [J].
Amini, Kiana ;
Pritzker, Mark D. .
ELECTROCHIMICA ACTA, 2018, 268 :448-461
[5]   Electrochemical redox processes involving soluble cerium species [J].
Arenas, L. F. ;
de Leon, C. Ponce ;
Walsh, F. C. .
ELECTROCHIMICA ACTA, 2016, 205 :226-247
[6]   The Importance of Cell Geometry and Electrolyte Properties to the Cell Potential of Zn-Ce Hybrid Flow Batteries [J].
Arenas, L. F. ;
Walsh, F. C. ;
de Leon, C. Ponce .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5170-A5179
[7]   Mass transport and active area of porous Pt/Ti electrodes for the Zn-Ce redox flow battery determined from limiting current measurements [J].
Arenas, Luis F. ;
de Leon, Carlos Ponce ;
Walsh, Frank C. .
ELECTROCHIMICA ACTA, 2016, 221 :154-166
[8]   Local potential measurement through reference electrodes in vanadium redox flow batteries: Evaluation of overpotentials and electrolytes imbalance [J].
Cecchetti, M. ;
Casalegno, A. ;
Zago, M. .
JOURNAL OF POWER SOURCES, 2018, 400 :218-224
[9]  
Clarke R.L., 2009, US PATENT, P625, Patent No. 7
[10]   Redox flow cells for energy conversion [J].
de Leon, C. Ponce ;
Frias-Ferrer, A. ;
Gonzalez-Garcia, J. ;
Szanto, D. A. ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :716-732