Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part

被引:16
作者
Chen, Wenhui [1 ]
Palmieri, Alessandro [2 ]
机构
[1] Tech Univ Bergakad Freiberg, Fac Math & Comp Sci, Inst Appl Anal, Pruferstr 9, D-09596 Freiberg, Germany
[2] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 70卷 / 02期
关键词
Semilinear weakly coupled system; Blow-up; Global in time existence; Scale-invariant lower-order terms; Critical curve; TIME BLOW-UP; GLOBAL EXISTENCE; CRITICAL EXPONENT; LIFE-SPAN; ELEMENTARY PROOF; NONEXISTENCE; MASS;
D O I
10.1007/s00033-019-1112-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we determine the critical exponent for a weakly coupled system of semilinear wave equations with distinct scale-invariant lower-order terms, when these terms make both equations in some sense parabolic-like. For the blow-up result, the test functions method is applied, while for the global existence (in time) results, we use L2-L2 estimates with additional L1 regularity.
引用
收藏
页数:21
相关论文
共 64 条
[21]   An elementary proof of the blow-up for semilinear wave equation in high space dimensions [J].
Jiao, HL ;
Zhou, ZF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (02) :355-365
[22]   BLOW-UP OF SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :235-268
[23]  
Kato M., ARXIV180704327V1
[25]  
KUROKAWA Y, 1975, TSUKUBA J MATH, V60, P1239, DOI DOI 10.1016/J.NA.2004.11.001
[26]  
Kurokawa Y., 2003, J MATH-UK, V27, P417
[27]  
Kurokawa Y, 2012, DIFFER INTEGRAL EQU, V25, P363
[28]  
Lai N. A, PREPRINT
[29]   Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent [J].
Lai, Ning-An ;
Takamura, Hiroyuki ;
Wakasa, Kyouhei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) :5377-5394
[30]   An elementary proof of Strauss conjecture [J].
Lai, Ning-An ;
Zhou, Yi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (05) :1364-1381