Devaney Chaos and Distributional Chaos in the Solution of Certain Partial Differential Equations

被引:17
作者
Barrachina, Xavier [1 ]
Alberto Conejero, J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
C-0-SEMIGROUPS; SEMIGROUPS;
D O I
10.1155/2012/457019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of distributional chaos has been recently added to the study of the linear dynamics of operators and C-0-semigroups of operators. We will study this notion of chaos for some examples of C-0-semigroups that are already known to be Devaney chaotic.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Albanese A. A., COMMUNICATIONS ON PU
[2]   A generalization of Desch-Schappacher-Webb criteria for chaos [J].
Banasiak, J ;
Moszynski, M .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (05) :959-972
[3]   Chaos for a class of linear kinetic models [J].
Banasiak, J ;
Lachowicz, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (06) :439-444
[4]   DYNAMICS OF BIRTH-AND-DEATH PROCESSES WITH PROLIFERATION - STABILITY AND CHAOS [J].
Banasiak, Jacek ;
Moszynski, Marcin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :67-79
[5]   Distributionally chaotic translation semigroups [J].
Barrachina, Xavier ;
Peris, Alfred .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) :751-761
[6]  
Bayart F., 2009, DYNAMICS OF LINEAR O, V179
[7]   Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces [J].
Bermúdez, T ;
Bonilla, A ;
Conejero, JA ;
Peris, A .
STUDIA MATHEMATICA, 2005, 170 (01) :57-75
[8]   Li-Yorke and distributionally chaotic operators [J].
Bermudez, T. ;
Bonilla, A. ;
Martinez-Gimenez, F. ;
Peris, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :83-93
[9]  
Bernardes Jr. N. C., DISTRIBUTIONAL CHAOS
[10]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112