On quantum kinetic equations of many-particle systems in condensed states

被引:3
作者
Gerasimenko, V. I. [1 ]
Tsvir, Zh A. [2 ]
机构
[1] NAS Ukraine, Inst Math, Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
关键词
Quantum kinetic equation; Nonlinear Schrodinger equation; Scaling limit; Cumulant of scattering operators; Quantum correlation; DYNAMICS; DERIVATION;
D O I
10.1016/j.physa.2012.07.061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a rigorous formalism for the description of the evolution of states of quantum many-particle systems in terms of a one-particle density operator, which enables us to construct the kinetic equations in scaling limits in the presence of correlations of particle states at initial time, for instance, correlations characterizing the condensed states. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:6362 / 6366
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1997, Many-Particle Dynamics and Kinetic Equations
[2]  
Arnold A, 2008, LECT NOTES MATH, V1946, P45
[3]   Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states [J].
Bardos, C ;
Golse, F ;
Gottlieb, AD ;
Mauser, NJ .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (3-4) :1037-1055
[4]  
Bogolyubov M.M., 1949, PROBLEMS STAT MECH Q
[5]   Initial-value problem of the quantum dual BBGKY hierarchy [J].
Borgioli, G. ;
Gerasimenko, V. .
NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2010, 33 (01) :71-78
[6]   Derivation of the cubic non-linear Schrodinger equation from quantum dynamics of many-body systems [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :515-614
[7]  
Erdos L, 2010, ANN MATH, V172, P291
[8]   Quantum Dynamics with Mean Field Interactions: a New Approach [J].
Erdos, Laszlo ;
Schlein, Benjamin .
JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (5-6) :859-870
[9]  
Gapyak I.V., 2011, ARXIV11075572
[10]   Dynamics of correlations of Bose and Fermi particles [J].
Gerasimenko, V. I. ;
Polishchuk, D. O. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (01) :76-93