ON UNIT BALLS AND ISOPERIMETRICES IN NORMED SPACES

被引:6
作者
Martini, Horst [1 ]
Mustafaev, Zokhrab [2 ]
机构
[1] Univ Technol Chemnitz, Fac Math, D-09107 Chemnitz, Germany
[2] Univ Houston Clear Lake City, Dept Math, Houston, TX 77058 USA
关键词
Busemann volume; cross-section measures; ellipsoids; Holmes-Thompson volume; inner radius; intersection body; isoperimetrix; Minkowski space; outer radius; projection body; INEQUALITY; AREA;
D O I
10.4064/cm127-1-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to continue the investigations on the homothety of unit balls and isoperimetrices in higher-dimensional Minkowski spaces for the Holmes-Thompson measure and the Busemann measure. Moreover, we show a strong relation between affine isoperimetric inequalities and Minkowski geometry by proving some new related inequalities.
引用
收藏
页码:133 / 142
页数:10
相关论文
共 18 条
[1]   On the inequality for volume and Minkowskian thickness [J].
Averkov, Gennadiy .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (02) :185-195
[2]  
Busemann H., 1956, Math. Scand, V4, P88, DOI [10.7146/math.scand.a-10457, DOI 10.7146/MATH.SCAND.A-10457]
[3]  
Gardner R. J., 2006, ENCY MATH APPL, V58
[4]   N-DIMENSIONAL AREA AND CONTENT IN MINKOWSKI SPACES [J].
HOLMES, RD ;
THOMPSON, AC .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 85 (01) :77-110
[5]  
Koldobsky A., 2005, FOURIER ANAL CONVEX, V116
[6]   Approximation of convex bodies by centrally symmetric bodies [J].
Lassak, M .
GEOMETRIAE DEDICATA, 1998, 72 (01) :63-68
[7]  
Lutwak E., 1993, Handbook of Convex Geometry, P151, DOI [10.1016/B978-0-444-89596-7.50010-9, DOI 10.1016/B978-0-444-89596-7.50010-9]
[8]  
Martini H., 2006, AEQUATIONES MATH, V72, P110, DOI DOI 10.1007/s00010-006-2825-y
[9]  
Martini H., 1994, C MATH SOC J BOLYAI, V63, P269
[10]  
Martini H., 2006, Period. Math. Hungar, V53, P185, DOI [10.1007/s10998-006-0031-2, DOI 10.1007/S10998-006-0031-2]