Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit

被引:77
作者
Hoke, W. E. [1 ]
Chelakara, R. V. [1 ]
Bettencourt, J. P. [1 ]
Kazior, T. E. [1 ]
LaRoche, J. R. [1 ]
Kennedy, T. D. [1 ]
Mosca, J. J. [1 ]
Torabi, A. [1 ]
Kerr, A. J. [1 ]
Lee, H. -S. [2 ]
Palacios, T. [2 ]
机构
[1] Raytheon Co, Andover, MA 01810 USA
[2] MIT, Cambridge, MA 02139 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2012年 / 30卷 / 02期
关键词
EPITAXY;
D O I
10.1116/1.3665220
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
GaN high electron mobility transistors (HEMTs) were monolithically integrated with silicon CMOS to create a functional current mirror circuit. The integrated circuit was fabricated on 100 mm diameter modified silicon-on-insulator (SOI) wafers incorporating a resistive (111) silicon handle substrate and a lightly doped (100) silicon device layer. In a CMOS-first process, the CMOS was fabricated using the (100) device layer. Subsequently GaN was grown by plasma molecular beam epitaxy in windows on the (111) handle substrate surface without wire growth despite using gallium-rich growth conditions. Transmission lines fabricated on the GaN buffer/SOI wafer exhibited a microwave loss of less than 0.2 dB/mm up to 35 GHz. Direct current measurements on GaN HEMTs yielded a current density of 1.0A/mm and transconductance of 270 mS/mm. At 10 GHz and a drain bias of 28 V, 1.25mm long transistors demonstrated a small signal gain of 10.7 dB and a maximum power added efficiency of 53% with a concomitant power of 5.6 W. The silicon and GaN transistors were interconnected to form high yield test interconnect daisy chains and a monolithic current mirror circuit. The CMOS output drain current controlled the GaN transistor quiescent current and consequently the microwave gain. (C) 2012 American Vacuum Society. [DOI:10.1116/1.3665220]
引用
收藏
页数:6
相关论文
共 15 条
[1]   Seamless On-Wafer Integration of Si(100) MOSFETs and GaN HEMTs [J].
Chung, Jinwook W. ;
Lee, Jae-kyu ;
Piner, Edwin L. ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (10) :1015-1017
[2]   Monolithic integration of AlGaN/GaN HFET with MOS on silicon ⟨111⟩ substrates [J].
Chyurlia, P. N. ;
Semond, F. ;
Lester, T. ;
Bardwell, J. A. ;
Rolfe, S. ;
Tang, H. ;
Tarr, N. G. .
ELECTRONICS LETTERS, 2010, 46 (03) :240-241
[3]   Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness [J].
Dadgar, A ;
Bläsing, J ;
Diez, A ;
Alam, A ;
Heuken, M ;
Krost, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (11B) :L1183-L1185
[4]   AlGaN/GaN HEMTs on (001) Silicon Substrate With Power Density Performance of 2.9 W/mm at 10 GHz [J].
Gerbedoen, Jean-Claude ;
Soltani, Ali ;
Joblot, Sylvain ;
De Jaeger, Jean-Claude ;
Gaquiere, Christophe ;
Cordier, Yvon ;
Semond, Fabrice .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (07) :1497-1503
[5]  
GRAY PR, 1993, ANAL DESIGN ANALOG I, P269
[6]   AlGaN/GaN high electron mobility transistors on 100 mm silicon substrates by plasma molecular beam epitaxy [J].
Hoke, W. E. ;
Kennedy, T. D. ;
Mosca, J. J. ;
Kerr, A. J. ;
Torabi, A. ;
Davis-Hearns, S. ;
LaRoche, J. R. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (03)
[7]  
Ioumazou C., 1998, ANALOGUE IC DESIGN C, P330
[8]   AlGaN/GaN HEMTs on (001) silicon substrates [J].
Joblot, S ;
Cordier, Y ;
Semond, F ;
Lorenzini, P ;
Chenot, S ;
Massies, J .
ELECTRONICS LETTERS, 2006, 42 (02) :117-118
[9]  
KAZIOR TE, 2009, P INP REL MAT C NEWP, P100
[10]   Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers [J].
Lederer, D ;
Raskin, JP .
SOLID-STATE ELECTRONICS, 2003, 47 (11) :1927-1936