A novel P300 BCI speller based on the Triple RSVP paradigm

被引:60
作者
Lin, Zhimin [1 ]
Zhang, Chi [1 ]
Zeng, Ying [1 ,2 ]
Tong, Li [1 ]
Yan, Bin [1 ]
机构
[1] China Natl Digital Switching Syst Engn & Technol, Zhengzhou, Henan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Key Lab NeuroInformat, Minist Educ, Chengdu, Sichuan, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
BRAIN-COMPUTER-INTERFACE; SINGLE-TRIAL EEG; CLASSIFICATION; MATRIX;
D O I
10.1038/s41598-018-21717-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A brain-computer interface (BCI) is an advanced human-machine interaction technology. The BCI speller is a typical application that detects the stimulated source-induced EEG signal to identify the expected characters of the subjects. The current mainstream matrix-based BCI speller involves two problems that remain unsolved, namely, gaze-dependent and space-dependent problems. Some scholars have designed gaze-independent and space-independent spelling systems. However, this system still cannot achieve a satisfactory information transfer rate (ITR). In this paper, we propose a novel triple RSVP speller with gaze-independent and space-independent characteristics and higher ITR. The triple RSVP speller uses rapid serial visual presentation (RSVP) paradigm, each time presents three different characters, and each character is presented three times to increase the ITR. The results of the experiments show the triple RSVP speller online average accuracy of 0.790 and average online ITR of 20.259 bit/min, where the system spelled at a speed of 10 s per character, and the stimulus presentation interface is a 90 x 195 pixel rectangle. Thus, the triple RSVP speller can be integrated into mobile smart devices (such as smartphones, smart watches, and others).
引用
收藏
页数:9
相关论文
共 52 条
  • [1] Acqualagna L., 2011, INT C IEEE ENG MED B
  • [2] A novel brain-computer interface based on the rapid serial visual presentation paradigm
    Acqualagna, Laura
    Treder, Matthias Sebastian
    Schreuder, Martijn
    Blankertz, Benjamin
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 2686 - 2689
  • [3] ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system
    Allison, BZ
    Pineda, JA
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) : 110 - 113
  • [4] A covert attention P300-based brain-computer interface: Geospell
    Aloise, Fabio
    Arico, Pietro
    Schettini, Francesca
    Riccio, Angela
    Salinari, Serenella
    Mattia, Donatella
    Babiloni, Fabio
    Cincotti, Febo
    [J]. ERGONOMICS, 2012, 55 (05) : 538 - 551
  • [5] Brain Activity-Based Image Classification From Rapid Serial Visual Presentation
    Bigdely-Shamlo, Nima
    Vankov, Andrey
    Ramirez, Rey R.
    Makeig, Scott
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (05) : 432 - 441
  • [6] Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control
    Birbaumer, Niels
    [J]. PSYCHOPHYSIOLOGY, 2006, 43 (06) : 517 - 532
  • [7] Does the 'P300' speller depend on eye gaze?
    Brunner, P.
    Joshi, S.
    Briskin, S.
    Wolpaw, J. R.
    Bischof, H.
    Schalk, G.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2010, 7 (05)
  • [8] Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke
    Buch, Ethan
    Weber, Cornelia
    Cohen, Leonardo G.
    Braun, Christoph
    Dimyan, Michael A.
    Ard, Tyler
    Mellinger, Jurgen
    Caria, Andrea
    Soekadar, Surjo
    Fourkas, Alissa
    Birbaumer, Niels
    [J]. STROKE, 2008, 39 (03) : 910 - 917
  • [9] Castelo-Branco M., 2011, INT C IEEE ENG MED B
  • [10] Single-Trial Classification of Event-Related Potentials in Rapid Serial Visual Presentation Tasks Using Supervised Spatial Filtering
    Cecotti, Hubert
    Eckstein, Miguel P.
    Giesbrecht, Barry
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (11) : 2030 - 2042