3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

被引:28
作者
Verdini, Andrea [1 ]
Grappin, Roland [2 ]
Alexandrova, Olga [3 ]
Lion, Sonny [3 ]
机构
[1] Univ Florence, Dipartimento Fis & Astron, Florence, Italy
[2] Ecole Polytech, LPP, Palaiseau, France
[3] Observ Paris, Lesia, Meudon, France
关键词
magnetohydrodynamics (MHD); plasmas; solar wind; turbulence; MAGNETOHYDRODYNAMIC TURBULENCE; 3-DIMENSIONAL ANISOTROPY; HYDRODYNAMIC TURBULENCE; INTERMITTENCY; WAVES; FLUCTUATIONS; EVOLUTION; SPECTRA; PLASMA; POWER;
D O I
10.3847/1538-4357/aaa433
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Alfven vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock [J].
Alexandrova, O. ;
Mangeney, A. ;
Maksimovic, M. ;
Cornilleau-Wehrlin, N. ;
Bosqued, J. -M. ;
Andre, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A12)
[2]   SOLAR WIND TURBULENT SPECTRUM AT PLASMA KINETIC SCALES [J].
Alexandrova, O. ;
Lacombe, C. ;
Mangeney, A. ;
Grappin, R. ;
Maksimovic, M. .
ASTROPHYSICAL JOURNAL, 2012, 760 (02)
[3]   Polarization intermittency and its influence on MHD turbulence [J].
Beresnyak, A ;
Lazarian, A .
ASTROPHYSICAL JOURNAL, 2006, 640 (02) :L175-L178
[4]   COMPARISON OF SPECTRAL SLOPES OF MAGNETOHYDRODYNAMIC AND HYDRODYNAMIC TURBULENCE AND MEASUREMENTS OF ALIGNMENT EFFECTS [J].
Beresnyak, A. ;
Lazarian, A. .
ASTROPHYSICAL JOURNAL, 2009, 702 (02) :1190-1198
[5]   SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS [J].
Beresnyak, Andrey .
ASTROPHYSICAL JOURNAL LETTERS, 2014, 784 (02)
[6]   Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport [J].
Bieber, JW ;
Wanner, W ;
Matthaeus, WH .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A2) :2511-2522
[7]   Spectrum of magnetohydrodynamic turbulence [J].
Boldyrev, S .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[8]   On the spectrum of magnetohydrodynamic turbulence [J].
Boldyrev, S .
ASTROPHYSICAL JOURNAL, 2005, 626 (01) :L37-L40
[9]   Magnetohydrodynamic Turbulence Mediated by Reconnection [J].
Boldyrev, Stanislav ;
Loureiro, Nuno F. .
ASTROPHYSICAL JOURNAL, 2017, 844 (02)
[10]   RADIAL DEPENDENCE OF THE FREQUENCY BREAK BETWEEN FLUID AND KINETIC SCALES IN THE SOLAR WIND FLUCTUATIONS [J].
Bruno, R. ;
Trenchi, L. .
ASTROPHYSICAL JOURNAL LETTERS, 2014, 787 (02)