Theoretical X-ray absorption spectroscopy database analysis for oxidised 2D carbon nanomaterials

被引:13
作者
Weber, Fabian [1 ,2 ]
Ren, Jian [1 ,3 ]
Petit, Tristan [1 ]
Bande, Annika [1 ]
机构
[1] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Methods Mat Dev, Albert Einstein Str 15, D-12489 Berlin, Germany
[2] Free Univ Berlin, Inst Chem & Biochem, Takustr 3, D-14195 Berlin, Germany
[3] Free Univ Berlin, Dept Phys, Arnimallee 14, D-14195 Berlin, Germany
关键词
GRAPHENE OXIDE; FINE-STRUCTURE; GRAPHITE OXIDE; BASIS-SETS; DENSITY; EXCITATION;
D O I
10.1039/c8cp06620e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we provide a proof of principle for a theoretical methodology to identify functionalisation patterns in oxidised carbon 2D nanomaterials. The methodology is based on calculating a large number of X-ray absorption spectra of individually excited carbon atoms in different chemical environments using density functional theory. Since each resulting spectrum gives a fingerprint of the local electronic structure surrounding the excited atom, we may relate each spectrum to the functionalisation pattern of that excited atom up to a desired neighbourhood radius. These functionalisation pattern-specific spectra are collected in a database, that allows fast composition of X-ray absorption spectra for arbitrary structures in density functional theory quality. Finally, we present an exemplary application of the database approach to estimate the relative amount of functional groups in two different experimental samples of carbon nanomaterials.
引用
收藏
页码:6999 / 7008
页数:10
相关论文
共 61 条
[1]   CARBON-1S NEAR-EDGE-ABSORPTION FINE-STRUCTURE IN GRAPHITE [J].
BATSON, PE .
PHYSICAL REVIEW B, 1993, 48 (04) :2608-2610
[2]   Time-dependent density functional theory calculations of the spectroscopy of core electrons [J].
Besley, Nicholas A. ;
Asmuruf, Frans A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (38) :12024-12039
[3]  
Brodie B.C., 1859, Philosophical Transactions of the Royal Society of London, V149, P249
[4]   PI-ASTERISK AND SIGMA-ASTERISK EXCITONS IN C-1S ABSORPTION OF GRAPHITE [J].
BRUHWILER, PA ;
MAXWELL, AJ ;
PUGLIA, C ;
NILSSON, A ;
ANDERSON, S ;
MARTENSSON, N .
PHYSICAL REVIEW LETTERS, 1995, 74 (04) :614-617
[5]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[6]   Oxygen Functionalities Evolution in Thermally Treated Graphene Oxide Featured by EELS and DFT Calculations [J].
D'Angelo, D. ;
Bongiorno, C. ;
Amato, M. ;
Deretzis, I. ;
La Magna, A. ;
Fazio, E. ;
Scalese, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (09) :5408-5414
[7]  
De La Cruz F. A., 1962, NATURE, V196, P468
[8]   Reversible Formation of Ammonium Persulfate/Sulfuric Acid Graphite Intercalation Compounds and Their Peculiar Raman Spectra [J].
Dimiev, Ayrat M. ;
Bachilo, Sergei M. ;
Saito, Riichiro ;
Tour, James M. .
ACS NANO, 2012, 6 (09) :7842-7849
[9]   Chemistry with Graphene and Graphene Oxide-Challenges for Synthetic Chemists [J].
Eigler, Siegfried ;
Hirsch, Andreas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) :7720-7738
[10]   Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide [J].
Erickson, Kris ;
Erni, Rolf ;
Lee, Zonghoon ;
Alem, Nasim ;
Gannett, Will ;
Zettl, Alex .
ADVANCED MATERIALS, 2010, 22 (40) :4467-4472