On the Stabilization of a Non-Dissipative Cauchy Viscoelastic Problem

被引:2
作者
Kafini, Mohammad [1 ]
Mustafa, Mohammad I. [2 ]
机构
[1] KFUPM, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Sharjah, Sharjah, U Arab Emirates
关键词
Decay; Cauchy problem; relaxation function; viscoelastic; hyperbolic; compactly supported; ASYMPTOTIC STABILITY; VOLTERRA EQUATION; GLOBAL EXISTENCE; ENERGY; DECAY; SYSTEMS;
D O I
10.1007/s00009-016-0799-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a linear Cauchy viscoelastic problem with an external source term. We find the critical weaker conditions on the source needed to show that, for any compactly supported initial data and for an exponentially decaying relaxation function, the decay of the first energy of solution is polynomial.
引用
收藏
页码:5163 / 5176
页数:14
相关论文
共 31 条
[1]   On nonlinear hyperbolic problems with nonlinear boundary feedback [J].
Aassila, M ;
Cavalcanti, MM .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2000, 7 (04) :521-540
[2]  
[Anonymous], 1992, SIAM STUD APPL MATH
[3]  
[Anonymous], 1987, PITMAN MONOGRAPHS SU
[4]  
[Anonymous], 2002, J. Differ. Equ
[5]  
Barreto R., 1996, Appl. Anal, V60, P263
[6]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
[7]  
Cabanillas E.L., 1996, Comm. Math. Phys, V177, P583, DOI DOI 10.1007/BF02099539
[8]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[9]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[10]   FOUNDATIONS OF LINEAR VISCOELASTICITY [J].
COLEMAN, BD ;
NOLL, W .
REVIEWS OF MODERN PHYSICS, 1961, 33 (02) :239-249